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ABSTRACT: The composition-dependent degradation of hybrid organic— Moisture exposure PL prediction with
inorganic perovskites (HOIPs) due to environmental stressors still precludes Q Q Q ML >90% accuracy
24 Al

their commercialization. It is very difficult to quantify their behavior upon 15

exposure to each stressor by exclusively using trial-and-error methods due to the Zz o4 WWY
high-dimensional parameter space involved. We implement machine learning 1 g

(ML) models using high-throughput, in situ photoluminescence (PL) to predict = 0.5 o experiment
the response of CsyFAl_be(BerI_x)3 while exposed to relative humidity cycles. | ' & 0.0 - pre‘“‘“‘"”
We quantitatively compare three ML models while generating forecasts of s 95 115
environment-dependent PL responses: linear regression, echo state network, and Time (h)

seasonal autoregressive integrated moving average with exogenous regressor

algorithms. We achieve accuracy of >90% for the latter, while tracking PL changes over a 50 h window. Samples with 17% of
Cs content consistently showed a PL increase as a function of cycle. Our precise time-series forecasts can be extended to other
HOIP families, illustrating the potential of data-centric approaches to accelerate material development for clean-energy
devices.

ybrid organic—inorganic perovskites (HOIPs) are a making comparison difficult even between perovskites from the

promising class of material for the development of same family.'”' Traversing the large HOIP compositional

energy-efficient devices ranging from solar cells to parameter space and quantifying the effect of all stressors (and
light-emitting diodes (LEDs).'” In HOIPs, with an ABX, their combinations) is unfeasible on the time scale needed to
structure, the A-site commonly contains organic cations such commercialize and meet net zero carbon emissions goals. Yet,
as methylammonium (MA*) and formamidinium (FA%), machine learning (ML) can accelerate the discovery of stable
inorganic cations such as Cs* or Rb*, or a mixture. The B- HOIPs by compositional Screeningn'lg by automated and
site is almost exclusively occupied by Pb**, though some work autonomous synthesis/characterization,'””” and by learning
has explored lead-free alternatives using Sn.* Halides— trends between composs(itional ratios and responses to
typically 17, Br™, or Cl~, or some mixture of the three— environmental stressors.” Further, time-series predictions

tracking photoluminescence (PL) over changing environ-
mental conditions can simulate real-world operating conditions
and provide an estimation of how HOIP solar cells will
perform in the future, akin to a weather forecast.

Here, we demonstrate how ML can be implemented to track
changes in radiative recombination of selected Cs,FA;_Pb-
(Br,1,_,); thin films, under repeated 6 h rH cycles that mimic
accelerated day-night weather variations based on typical
summer days in northern California. Using a high-throughput

occupy the X-site. Compositional tuning of the A- and X-sites
enables tailoring of the bandgap, an essential property for
optoelectronic applications. As these materials approach
commercialization, several experimental challenges slow their
advancement, including the vast compositional parameter
space available and the complex, sometimes convoluted,
contribution of environmental stressors to their still limited
stability.”® Material degradation occurs through different
processes, including decomposition, degassing, phase transi-

tions, and phase segregation, depending on the chemical

composition and the set of environmental stressors applied.” Received: November 10, 2022
Environmental conditions, such as moisture, affect the Accepted: January 9, 2023

optical behavior (e.g, photoluminescence’s peak location, Published: March 10, 2023

value, and full-width half-maximum)’™'® of HOIPs, with

material changes that are dynamic over time and often

nonlinear.'* They are also heavily composition-dependent,
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setup, we obtain 50 PL spectra every hour and 7200 spectra
over the course of a single experiment, sufficient for a robust
ML-driven analysis. For a single cycle, all compositions
interrogated display a PL enhancement with increasing rH as
H,O passivates bandgap trap states and suppresses non-
radiative recombination. Surprisingly, FA-rich films show the
greatest PL increases over the course of the rH cycling, while
Cs-rich films reach a plateau in maximum PL value after 5—10
cycles. The rH-cumulative features presented in the PL
responses are chemical-composition-dependent, justifying the
need for applying ML methods that are composition-agnostic.
We apply three ML models to the data sets and generate
forecasts of environment-dependent PL responses and
quantitatively compare their accuracy. We use linear regression
(LR), echo state network (ESN), and seasonal auto-regressive
integrated moving average with exogenous regressors (SAR-
IMAX) algorithms and find average normalized root-mean-
square error (NRMSE) values of 54, 47, and 8%, respectively.
The very high and consistent accuracy of SARIMAX, even
when tracking long-term changes over a 50 h window,
showcases this algorithm’s capability to model complex,
nonlinear data from varied HOIP compositions. Overall, the
precise time-series forecasts illustrate the potential of data-
centric approaches for HOIP stability investigations and stages
the promise of automation, data science, and ML as tools to
drive the further development of this emerging material.

We choose the archetype Cs},FAI_be(Berl_x)3 family and
the Cs-FA and Br-I compositional spaces considering their
bandgap variability and potential applications in photovoltaics.
To avoid the detrimental effects of MA*, the A-site is instead
occupied by formamidinium (FA*) and cesium (Cs*). Table 1

Table 1. Compositional Space of the Perovskite Films®

Cs (%)/Br (%)
Cs-50%/Br-0%

Cs-50%/Br-17%
Cs-50%/Br-33%
Cs-33%/Br-17%
Cs-17%/Br-17%

Composition Cs,FA;_,Pb(I,Br;_,);
CsyFAy PbL,
Cs3/6FA3/6PbBr 15 5
Cs;/6FA; sPbBr)I,
Cs,sFA,/sPbBr; 15,
Cs,/6FAs/sPbBr 515,

“Ratios of Br:I and Cs:FA are varied simultaneously.

displays the specific chemical compositions used in our
environmental PL cycles. The selected samples represent
well the variability of material response upon exposure to
moisture, ultimately constituting a model system for the ML-
based analyses presented here. All in situ experiments are
performed simultaneously (see Figure S1 for details regarding
our automated setup), which assures that all samples are
submitted to the very same environmental stressor conditions.

To quantify and deconvolute the effects of rH on the HOIP
samples, we first track the transitions in PL over the course of
one rH cycle. The initial increase to 70% rH produces a
significant enhancement in radiative recombination, see Figure
la—e. As expected, as the rH decreases to <5% (Figure 1f—j), a
corresponding decrease in PL peak value is observed. Similar
effects have been reported in the literature.”"””* The presence
of moisture in the environment passivates trap states located
within the semiconductor bandgap. Consequently, there is a
reduction in nonradiative recombination events, giving rise to
this seemingly counterintuitive behavior. The initial PL spectra
before any rH exposure are shown in Figure S2. Note that, as
desired, the PL signal is unchanged during the time-dependent
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tests at low rH, see Figure 1k—o. It is important to deconvolute
any potential effects of time-dependence from the influence of
rH onto material degradation.

To visualize the long-term spectral evolution from rH
cycling, we plot a series of spectra acquired under identical
environmental conditions (rH < 5%, T = 22 °C) for each
sample (Figure 2a—e), after the 2nd, 7th, 12th, and 17th
cycles. The final, darkest spectrum was taken after all 18 rH
cycles were completed and the samples were held in an inert
rH < 5% condition for 10 h. These final spectra are to verify
that the samples recovered from any transient, water-induced
chemical processes, as desired for our ML-based analysis.
Notably, the pure-I composition (Cs-50%/Br-0%, in Figure
2a) shows negligible peak shifting despite a significant decrease
in overall PL intensity. Because I” is larger than Br™, it distorts
the atomic lattice of the perovskite, weakening atomic orbital
overlap and reducing the bandgap. Ion migration in mixed-
halide compositions into I” rich and Br-rich domains will, thus,
manifest macroscopically as a decrease in bandgap, i.e., a shift
to longer PL wavelengths accompanied by a broadening of the
emission peak.”””* Concurrently, samples Cs-50%/Br-17% and
Cs-33%/Br-17% (Figure 2b,d, respectively) exhibit a minor
(~10 nm) red shift in PL peak location and an overall
broadening of the PL emission spectrum over repeated rH
cycling. Therefore, we attribute the observed multicycle trends
in peak location and width to halide segregation, as previously
observed in this perovskite family.***°

In terms of the peak PL value, the A-site composition exerts
significant control over the multicycle behavior. Compositions
with a 1:1 Cs:FA ratio (Figure 2a—c) display contrasting
effects, some exhibiting a decrease in PL intensity (Cs-50%/Br-
0% and Cs-50%/Br-33%) and one showing a significant
increase (Cs-50%/Br-17%). These opposing trends could be
due to local phase segregation, microstructural inhomogeneity
and voids, or structural distortions dependent on the Br:I
ratio.””** The Cs-poor compositions (Cs-33%/Br-17% and
Cs-17%/Br-17% in Figure 2d,e, respectively) display the
greatest moisture-induced enhancement in radiative recombi-
nation. Overall, these measurements demonstrate the remark-
ably complex interplay between rH and PL in perovskite films,
which we show is heavily dependent on both composition and
time of exposure.

While the general trend of humidity-induced PL enhance-
ment is consistent for all samples, we observe composition-
dependent fluctuations in behavior both across single cycles
and over the course of several days of cycling, as seen in Figure
2f—j. Here, we track the maximum PL intensity as a function of
rH, as this is an ideal input to train, validate, and test the ML
models, as will be discussed later. The high-Cs* perovskites
show drastically different behavior. Rather than accumulating
PL enhancement over time, the material in both Cs-50%/Br-
0% and Cs-50%/Br-33% (Figure 2£h) undergoes a decrease
and subsequent plateau after 5—10 rH cycles. Once this
plateau is reached, the accumulated PL enhancement after each
rH cycle is minimal. These samples have intermediate Cs:FA
ratios and are located at the extremes in terms of tested halide
content. Interestingly, the intermediate halide composition
(Cs-50%/Br-17%, shown in Figure 2g) does not display the
same trend. Here, the PL signal increases almost monotonically
with cycles. Conversely, the lowest Cs* content sample (Cs-
17%/Br-17%, Figure 2j) presents high sensitivity to the
presence of moisture, where we detect consistent variations
in PL peak intensity for nearly all cycles. Further investigation
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Figure 1. Spectral evolution of PL emission during humidity cycle. PL spectra as the relative humidity (rH) is increased to 70% within 2.5 h,
decreased to <5% over 2.5 h, and then held at <5% for 1 h for samples (a—c) Cs-50%/Br-0%, (d—f) Cs-50%/Br-17%, (g—i) Cs-50%,/Br-33%,
(j=1) Cs-33%/Br-17%, and (m—o) Cs-17%/Br-17%. Arrows denote passage of time as the spectrum color changes in hue darkness. Spectra

for all samples are collected every 6 min.
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Figure 2. Effect of humidity cycling on PL. Top row: PL spectra for samples (a) Cs-50%/Br-0%, (b) Cs-50%/Br-17%, (c) Cs-50%/Br-33%,
(d) Cs-33%/Br-17%, and (e) Cs-17%/Br-17% at five time points during the 118 h experiment (corresponding to 18 rH cycles). Each
spectrum is acquired under identical environmental conditions (22 °C, rH < 5%) after 0, 32, 62, 92, 122, and 143 h. Bottom row: Maximum
PL intensity for samples (a) Cs-50%/Br-0%, (b) Cs-50%/Br-17%, (c) Cs-50%/Br-33%, (d) Cs-33%/Br-17%, and (e) Cs-17%/Br-17%
subjected to relative humidity (rH) cycling for 108 h (total experiment time is 144 h). The normalized rH profile is shown (black line) on
each plot, see right y-axis. The left y-axis denotes the normalized PL. Each 6 h cycle ranges from <5 to 70% rH. The color-coded arrows

correspond to the selected spectra shown in (a—e).

is needed to determine the specific physical mechanisms for PL
enhancement and decay in these samples, an important study
that is beyond the scope of this work, as we choose to focus on
the accuracy of ML models instead. Note that the nonlinear
optical response of this perovskite family makes it an ideal
model system to implement and assess ML routines.

The large amount of data acquired in our experiments,
>7000 PL spectra within 6 days, is sufficient to train predictive
ML models without the need for data augmentation. Thus, PL
is an ideal method for quantitatively comparing distinct ML
models. We apply three ML algorithms of varying complexity
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to time-series PL data: linear regression (LR), echo state
network (ESN), and seasonal autoregressive integrated moving
average with exogenous factors (SARIMAX). Here, we focus
solely on computational methods to identify the most
promising approach for HOIP time-series forecasting while
splitting the experiment into a train/validation set and a test
set, see Figure 3a. To evaluate how well these ML models can
predict over a compositional range, we use standardized
methods across the sample set. The three algorithms are
independently trained and tested on each of the sample
compositions. This adaptability is critical given the vast

https://doi.org/10.1021/acsenergylett.2c02555
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Figure 3. Machine learning models to forecast PL response in halide perovskites. (a) Relative humidity (rH) cycling data is split into
training/validation and testing sets. (b) Schematic of echo state network (ESN) to forecast environmental PL. Variable rH inputs enter a
sparsely connected reservoir of neurons, which outputs a prediction for the PL value. During training, the network updates the input,
reservoir, and output weight matrices to minimize error between its PL predictions and the experimental data. At the testing stage, the
weights are constant, and the ESN generates forecasts based only on the rH data at each time point.
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Figure 4. Forecasting humidity-dependent PL. Test set predictions (black lines) and seasonal experimental data (colored dots) for linear
regression (LR), echo state network (ESN), and seasonal autoregressive integrated moving average with exogenous regressors (SARIMAX)
for (a,fk) Cs-50%/Br-0%, (b,gl) Cs-50%/Br-17%, (ch,m) Cs-50%/Br-33%, (d,iyn) Cs-33%/Br-17%, and (e,j,0) Cs-17%/Br-17%. In all
cases, relative humidity (rH) is the sole input to the models during testing.

compositional space for HOIPs. The practicality and time
effectiveness of ML in the context exploited here would be
severely reduced if different optimization processes requiring
human inputs were necessary to train a different model for
every sample (in this case, the human time cost to fit all
samples would be increased 10X). See the SI file for a detailed
description of the data acquisition and analysis methods.
First, we implement a baseline LR algorithm using a 50%—
50% train-test split. The model uses rH and PL training data to
determine the regression coeflicients. For the test set, rH data
points (Figure 3a) are inputted to the model, which then
generates a PL forecast. The test results are displayed in Figure
4a—e for all samples, where the black lines are the regression
predictions, and the colored circles are the experimental data.
The predictive performance is highly variable between samples,
and the normalized root-mean-square error (NRMSE) values
range from ~92% (Cs-33%/Br-17%) to 23% (Cs-50%/Br-0%).
However, the average across all samples is 54%, with an overall
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poor visual fit. Note that although a separate regression is
generated for each sample, the process is completely
automated, and the fitting takes <0.01 s per sample on a
computer with 16 GB of RAM. Therefore, this is a
composition-agnostic approach with very high computational
efficiency.

To improve upon the LR prediction accuracy while
preserving computation efficiency, we develop an ESN to
model the data, a form of recurrent neural network (RNN)
where “recurrent” means that the network retains a dynamic
memory of past states, see Figure 3b.”® The ESN performs
modestly better than the LR model, as displayed in Figure 4f—
j. Here, we subdivide the nontest data into training and
validation sets, with a 25%—25%—50% train-validation-test
split, where past PL values and trends are used to generate
predictions. For all compositions, we implement a 250-node
ESN with a sparsity of 0.1 (meaning 10% of recurrent weights
are set to zero). The hyperparameter optimization is shown in

https://doi.org/10.1021/acsenergylett.2c02555
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Figure S3 (see the SI for further details.) These values are
selected to provide a balance between complexity and
computational efficiency.”

The ESN model still diverges for a few samples, requiring us
to use a more sophisticated algorithm: seasonal autoregressive
integrated moving average with exogenous regressors (SAR-
IMAX). This statistical modeling approach sets interpretable
coefficients during the fitting process, like LR, an advantage
over black box neural networks like ESN. Our SARIMAX
entails a 50%—50% train-test split, two differencing steps and
two moving average terms which use observations at previous
time steps (see SI for details). The accuracy enhancement is
dramatic in this case: the PL response of all samples can be
predicted with high exactitude, regardless of global and local
trends. SARIMAX, like all other algorithms presented here,
uses a composition-agnostic approach so that human input is
only required once.

Concerning the details regarding SARIMAX, seven inter-
pretable coeflicients are selected, represented by variables
(p,d,q)(P,D,Qs), as described in the SI file. The integrative
parameter (d) corresponds to the order of differencing, where
a differenced time series is equal to the change between points
in the original time series. We apply one order of differencing
(d = 0 or 1) and one order of seasonal differencing (D = 1).
These mathematical operations are needed to produce a
stationary time series—that is, a series in which the statistical
properties (such as mean and variance) do not vary over
time—which is a prerequisite for statistical modeling.
Autoregressive terms (p) are then added to incorporate the
effects of past PL measurements on the PL at the current time.
For example, p = 1 adds a term for the PL value at t — 1. No
autoregressive terms are included as the effect of previous data
points is negligible after differencing (Figures S4 and SS).
Moving average terms (gq) track the change in the series over
time by averaging consecutive terms. We apply one moving
average term (g = 1) and one seasonal moving average term
(Q = 1). We also set the seasonality parameter (s) to 60, the
number of data points contained in each day-night cycle, for a
final SARIMAX with coefficients (0,1,1)(0,1,1,60). The
exogenous variables, rH and temperature, serve as additional
inputs to the model.

A model performance comparison for the rH cycling
prediction task is shown in Figure 5. We use the normalized
root-mean-square error (NRMSE) metric, which is scale-
invariant and enables direct comparison between ML models.
As expected, the LR model has the highest NRMSE for nearly
every sample, followed by the ESN, and finally the SARIMAX.
The rH cycling created nonlinear responses in the perovskite
films (see Figure 4), likely due to the complexity of the

1720

physical mechanisms involved, including water adsorption and
trap state passivation. The patterns in the time series for the rH
cycling caused low prediction accuracy for the LR and the
ESN, with average NRMSEs of 54 and 46%, respectively. By
adding seasonality trends and moving average terms to a neural
network, we establish an SARIMAX model with an average
prediction NRMSE of only 8% over the 54 h prediction
window (eight day-night cycles). The highest NRMSE found,
equal to 13%, is accounted for Cs-50%/Br-17% because after
30 h of prediction the SARIMAX function slightly loses track
of the past trends. Additional valuable information could be
interpreted from the PL spectra, such as the full-width half-
maximum (fwhm) of the main peaks and the integrated PL
signal (the full area under the PL spectra) (see Figure S6). We
use this information to further train the SARIMAX models,
complementing the data gathered from the PL intensity trends,
which do not “tell the full story” of how the material is
changing upon exposure to rH. We note that the average
NRMSE is higher than that of the PL peak intensity in our
case, as the fwhm and integrated PL have more irregular
responses to the cyclical rH inputs. This result indicates that
further refinement of the SARIMAX algorithm is needed to
fully describe and predict PL spectra, including wavelength-
dependent changes, which is beyond the scope of this work.
SARIMAX models could also be combined with another
recurrent neural network, such as long short-term memory,5 to
predict the optical response of chemical compositions beyond
the ones trained, maintaining the time-correlation originally
learned by the model while discovering composition-depend-
ent trends. Overall, the extremely high precision for the
SARIMAX model is offset by its computational cost and fitting
time, which is 1—2 orders of magnitude longer than that of the
ESN. We quantify the consequences of this trade-off by
comparing the SARIMAX fitting time to the length of the
prediction window. We calculate a 1:1500 ratio between these
times, indicating that the fitting process remains highly
effective for this task.

In conclusion, we demonstrated the capabilities of ML to
forecast the PL environmental response in a series of
CsyFAI_be(Brx I,_,); perovskites. Using rH cycling data, we
trained three algorithms, LR, ESN, and SARIMAX, and
quantitatively compared their accuracy. We found that seasonal
neural networks, such as SARIMAX, can predict material
behavior with >90% accuracy during an eight day-night rH
cycle. For a quantitative comparison between three ML
models, we first sorted and preprocessed the data, combining
rH and PL observations into time-correlated “data points.” We
then trained and validated the models on the first 50% of each
data set and used the remaining 50% to test their ability to
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predict the maximum PL value at every time step with only the
rH as input. The models obtained average errors of 54% (LR),
47% (ESN), and 8% (SARIMAX) over SO+ hours. For every
ML task, we ensured that our methods were composition-
agnostic, meaning that the same process could be used for
other types of HOIPs. Our results showed that LR is not an
adequate approach for nonstationary time series. Yet, the use
of neural networks to forecast the PL response is very suitable
for analyzing HOIPs’ changes upon exposure to rH. The
generalizability of our methods to multiple compositions can
help shorten the time required for compositional tuning, which
is currently a major bottleneck in the design process of HOIP
for light-absorbing and -emitting devices. Specifically, the
combination of SARIMAX with long short-term memory
(LSTM) models could enable the prediction of perovskite
chemical compositions beyond the training set, which, in turn,
would lead to an accurate estimate of the stability of currently
underexplored compositions. We envision extensions of this
work to include other environmental stressors beyond
moisture (such as oxygen, temperature, light, and bias).
Combinations of many stressors could mimic operating
conditions in various geographic locations, providing insight
into HOIP solar cells’ stability without necessitating lengthy
experiments at each individual location.
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