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AI-Driven Robot Enables Synthesis-Property Relation
Prediction for Metal Halide Perovskites in Humid
Atmosphere

Ansuman Halder, Maher B. Alghalayini, Shuan Cheng, Nikil Thalanki, Thong M. Nguyen,
Abigail R. Hering, Do-Kyoung Lee, Simon Arnold, Marina S. Leite, Edward Barnard,
Aleksandr Razumtcev, Morgan Wall, Arian Gashi, Yi-Ru Liu, Marcus M. Noack,
Shijing Sun,* and Carolin M. Sutter-Fella*

Materials Acceleration Platforms (MAPs) – also known as self-driving
laboratories– present a new paradigm for materials science and promise an
order of magnitude accelerated materials discovery compared to the
traditional trial-and-error approach. Metal halide perovskites (MHPs) are an
emerging class of materials for optoelectronic applications but are plagued by
irreproducible optoelectronic quality, particularly for films fabricated in a
humid atmosphere. Here, a machine learning (ML)-guided closed-loop
platform is developed with a multimodal data fusion approach to predict
synthesis–property relations for the optical quality of MHP thin films in
relative humidities (RHs) ranging from 5–55%. The efficiency of this approach
is confirmed by the fast-dropping learning rate to 2% after experimentally
sampling less than 1% of the possible 5,000+ combinations. The prediction
of synthesis–property relations is done by optical and imaging
characterizations. In situ photoluminescence characterization revealed the
origin of thin film quality variation at different RH. These insights provide an
avenue for controlling the MHP crystallization by fine-tuning the synthesis
parameters and RH for a given chemistry, thus lifting the need for stringent
atmosphere control. The MAP enables an accelerated screening and
understanding of the synthesis design space, facilitating rational synthesis
recipe choice for a wide range of materials.
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1. Introduction

Traditionally, materials discovery has
been a time-consuming, expensive
effort based on intuition and the Edis-
onian trial-and-error experimentation
approach. Fueled by advanced com-
putation, artificial intelligence (AI),
and robotics, Materials Acceleration Plat-
forms (MAPs) are an emerging paradigm
in materials science to accelerate materi-
als optimization discovery.[1] MAPs–also
known as self-driving laboratories–
automate the materials discovery process
by building a closed-loop workflow that
integrates synthesis, characterization,
robotics, and machine learning (ML)
algorithms.[2–7] The Mission Innovation
report stated that MAPs “envisage(s) a
Moore’s law for research, where the rate
of research doubles every two years.”[1]

MAPs hold the promise to accelerate the
discovery of materials and clean energy
innovations by a factor of ten, i.e., from
10–20 years to 1–2 years.[1,8] The success
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of MAPs was demonstrated for various multidisciplinary mate-
rials science questions in recent years. For example, Ceder et al.
reported 41 inorganic powder compounds proposed by natural-
language models within 17 days of continuous operation.[5]

Cronin et al. demonstrated that a curiosity algorithm robot re-
vealed properties of unfamiliar systems that would not have been
possible with the same budget (time, cost) using a random pa-
rameter search.[9] Brabec et al. reported the efficient optimiza-
tion ofmulticomponent polymer blends for organic photovoltaics
with almost 100 times smallermaterials consumption used in au-
tonomous experiments compared to the manual process.[10]

Here, metal halide perovskites (MHPs) such as the formami-
dinium lead iodide (FAPbI3) family are chosen as a model sys-
tem because they are infamously known for their sensitivity to
relative humidity (RH), leading to instability and irreproducible
film formation. The exact synthesis parameters (e.g., antisolvent
drop time, annealing temperature, annealing time, atmosphere)
and their combinatorial interplay affect film quality reproducibil-
ity. In this regard, robotic platforms are highly suited for a sys-
tematic parameter screening as demonstrated by Zhang et al.[11]

Stringent requirements on the fabrication atmosphere signifi-
cantly increase the complexity and cost of the fabrication pro-
cesses. It was found that the presence of RH during film for-
mation can lead to uncontrollable crystallization as well as phase
instability.[12] On the other hand, Eperon et al. showed that RH in
the precursor solution or from the atmosphere during film for-
mation leads to partial solvation of the methylammonium (MA+)
“self-healing” of the perovskite lattice, resulting in significantly
improved open-circuit voltage (VOC).

[13] In a different study, it was
found that additives such as MACl (methyl ammonium chloride)
in combination with RH help the stabilization of the 𝛼-FAPbI3
phase by enhancing the vaporization of residual MACl.[12] The
effect of RH on the fabrication of MHPs is a topic of ongoing de-
bate and significantly depends on the precursor chemistry.[12–14]

In this work, we develop a machine learning (ML)-
guided closed-loop platform named “AutoBot” to pre-
dict RH-dependent synthesis-property relationships for
Cs0.1FA0.9PbI3perovskite.This objective is accomplished through
quantifying the combinatorial interplay between humidity
during spin coating, (annealing temperature, annealing time,
antisolvent drop time) while keeping the precursor chem-
istry constant. A core component of AutoBot is a multimodal
characterization approach that integrates photoluminescence
(PL) imaging, UV–vis, and PL spectroscopy to establish a
film quality metric. Our active learning framework enables
minimal experimental sampling where Bayesian optimization
(BO) identifies the most informative experiments to construct
synthesis–property relation maps. SHapley Additive exPlana-
tions (SHAP) analysis enables rapid quantification of the feature
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importance in our 4D parameter space and identifies the spin
coater RH as the most important contribution to sample quality.
The iterative learning loop was stopped when the subsequent
information gain showed a rapid decrease in the learning rate
to ≈2% after experimentally sampling less than 1% of the
possible 5000+ combinations. Lastly, in situ photoluminescence
characterization was used to investigate how RH regulates the
MHP crystallization. High RH (>25–55%) enhances MACl
vaporization, which likely led to the destabilization of the pho-
toactive perovskite phase, consequently, poor film properties.
Meanwhile, low RH (5–25%) promotes heterogeneous nucle-
ation and 𝛼-perovskite phase stabilization. AutoBot accelerates
the screening and understanding of the synthesis design space,
facilitating rational synthesis recipe choice for a wide range of
materials.

2. Results

The AutoBot closed-loop platform was designed to synthesize
halide perovskite thin films (Cs0.1FA0.9PbI3) from chemical pre-
cursor solutions with 10 mol% MACl additive to enhance crys-
tallization control.[15] Thin film synthesis was followed by in-line
optical characterization, namely UV–vis transmission, PL spec-
troscopy, and PL imaging (Figure 1; Figure S1a, Supporting In-
formation). A typical loop of the automated platform consists of
the following steps: a) chemical precursor solution deposition
through spin coating, antisolvent treatment, thin film annealing,
followed by coating with a protective Poly(methyl methacrylate)
(PMMA) polymer layer.[16] b) in-line optical characterization; c)
data extraction from spectra images, data fusion into a unitless
total score (0–100) representing the film quality, where higher
scores indicate higher quality; and d) ML suggestion of new ex-
periments based on the total score.
Four synthesis parameters, the annealing temperature

(100–200 °C, step size 10 °C), the annealing duration (5–60 min,
step size 5 min), the antisolvent drop time (15–45 s, step size
5s), and the RH in the spin coater (5–55%, step size 10%) were
varied. The RH in the spin coater was varied by purging dry or
wet N2 into the coater while depositing the film (see close-up
photographs of the purging setup in Figure S1b,c, Supporting
Information). It is noted that AutoBot is operated in a fume hood
where the RH during annealing was not controlled but recorded
to be typically between 40–60%. The four synthesis parameters
create a combinatorial parameter space with 5000+ possible
combinations, and their optimal combination at different RH is
unknown. Each set of synthesis conditions (referred to as a batch)
is executed four times under nominally identical conditions,
producing four samples per batch (see sample photographs,
spectral imaging data in Figures S2–S5 and Table S1, Supporting
Information).

2.1. Multimodal Data Fusion: Extracting the Total Score

A key challenge in automating synthesis decision-making based
on multiple characterization techniques is obtaining machine-
readable metrics that accurately represent material quality.
While some studies have proposed extracting numerical met-
rics from single-characterization techniques (e.g., microscopy or
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Figure 1. Schematic representation of the closed-loop platform. a) Photograph of the AutoBot synthesis and in-line characterization platform,
b) schematic of in-line optical characterization, c) dimensional data reduction and fusion, d) ML input to define the next experiment.

spectroscopy), in practice, scientists typically rely on multiple
characterization methods to comprehensively evaluate synthetic
outcomes.[17,18] In this work, a data fusion approach (Figure 2)
was developed by combining spectroscopic datasets collected in
two different modes with imaging data to provide a holistic eval-
uation of the perovskite film quality. First, UV–vis transmission
spectra, PL spectra, and PL imaging data were collected. Second,
we developed a metric to represent the film quality from each
characterization. Third, metrics from the three characterizations

were weighted and combined into a single unitless total score that
serves as a target for machine learning exploration. The weights
for UV–vis spectra, PL spectra, and PL imaging were 40 – 20 –
40. Spectral PL was weighted lower because high levels of hu-
midity lead to lower nucleation density, larger grains, thus high
PL emission intensity, but poor substrate coverage (compared in
Figure S6, Supporting Information; see Methods section for ad-
ditional explanations). A high total score represents an optically
dark, highly emissive, smooth and at the same time uniform,

Figure 2. Data fusion schematic and high-low quality thin films. a) Representation of the multimodal data fusion approach. First input data (UV–vis
transmission spectra, PL spectra, and PL images) is collected, followed by dimensional data reduction, and lastly data fusion into a total score through
the weighted sum of individual components. b–e) Examples of high-low quality MHPs films (i.e., two batches with four nominally identical films), their
individual metrics, total score.
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Figure 3. Machine learning and Bayesian optimization results. a) Gaussian process regression predicted synthesis–property relation maps illustrating
the total score in relation to the annealing time (Time), antisolvent drop time (AS), and annealing temperature (Temp), binned at different RH. Black
circles represent individual experimental points. b) Corresponding uncertainties to (a), binned at different RH. c) 4D parameter space representing the
40 experimental batches fabricated. d) Cumulative total information gain (or cumulative Kullback-Leibler divergence). e,f) Global feature importance
ranking obtained from SHAP analysis showing the importance of synthesis conditions in descending order of importance (rank). The standard deviations
are attached to each mean value.

fully coveringMHP thin film, while a low score represents a poor
quality inhomogeneous thin film, which aligns with the domain
experts’ manual evaluation (Figure 2b–e). See methods and SI
for more details (Figures S7–S11, Table S1, Supporting Informa-
tion, last four columns). It is noted that the overarching goal of
our study was the development of a generalizable workflow for
a materials acceleration platform. A crucial step in any materi-
als optimization, including device fabrication, is the definition of
processing windows.[19] In this respect, our approach could be
modified in future experiments and also used in the next stage to
explore device-related aspects.

2.2. Active Learning-Assisted Generation of Synthesis–Property
Relation Maps

Next, ML was applied to efficiently explore the parameter space
with 5000+ possible experimental combinations. Bayesian opti-
mization (BO) algorithms have been used in the MHP field to
optimize material quality reproducibility as well as stability.[11,20]

Here, we used Gaussian process regression (GPR) to predict
synthesis–property relation maps of the total score, considered as
a proxy for the quality of the MHP film, to the process parame-
ters x = {x1, x2, x3, x4}⊂X where x1 to x4 are the antisolvent drop
time, annealing temperature, annealing time, and spin-coater
relative humidity, respectively. Specifically, GPR was chosen be-

cause of its ability to stochastically approximate unknown func-
tions using small datasets compared to other ML models.[21–23]

Furthermore, a key advantage of the GPR lies in its inherent
ability to estimate the uncertainty associated with its predictions,
which is crucial when identifying new experiments during iter-
ative closed-loop active learning efforts. To leverage this capabil-
ity, a BO approach with the total correlation acquisition function
was implemented to explore the parameter space efficiently.[24]

The total correlation acquisition function identifies points that
are least correlated with each other and with the previously tested
points to maximize the information gained from each experi-
ment. Herein, our analysis started with 16 randomly selected
points in the parameter space in iteration zero. During each sub-
sequent iteration, the BO uses previous experiments to identify
three future conditions to test. More details about GPR BO are
provided in the Methods section.
The GPR model predicted synthesis-property relations across

varying spin coater RH levels (5–55%) and provided their uncer-
tainties (Figure 3a,b; Figure S12, Supporting Information) rep-
resented by the standard deviation of the total score distribution.
The highest total scores (>80) were found and predicted for ex-
periments conducted in a RH window between 5–25% (Figures
S11 and S12, Supporting Information). At RH ≥ 35%, the best
predicted total scores are ≤ 66. Therefore, there seems to be a pro-
cessing window between 5–25% RHwhere similar quality halide
perovskite films can be obtained by adjusting the annealing
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temperature to an average of 170 °C, the antisolvent drop time
after 35–40 s, and the annealing time to a maximum of 25 min.
One well-discussed reason for this relatively higher annealing
temperature, when compared to the prototype MAPbI3 (MA =
methylammonium) perovskite, is the competition between the
non-photoactive 𝛿H- and photoactive 𝛼-FAPbI3 phases.

[25] The
transition from 𝛿H-𝛼-FAPbI3 was found at 165 °C, while alloy-
ing with Cs leads to a decrease in the transition temperature with
increasing Cs ratio.[25] This also explains why the total score is typ-
ically lower for samples annealed at temperatures ≤ 130 °C. The
suitable temperature range is consistent with previous studies on
FAPbI3 and CsFAPbI3.

[26–28]

The iterative process stopped after eight BO iterations (40
batches corresponding to 160 samples, see Figure 3c), sampling
less than 1% of the total parameter space. A stopping criterion
based on information gained from experiments was used to iden-
tify when information gain became limited (≈2% over five con-
secutive iterations) through additional experiments. This implied
that continuing experiments would not significantly improve
the predictions. Specifically, the Kullback-Leibler (KL) divergence
was used to compute the difference between the GP model be-
fore and after adding the new experiments. A large KL value in-
dicates that the new experiments significantly changed the GP
model predictions, resulting in improved synthesis-property re-
lation predictions. The steep initial increase in the total KL in
Figure 3d indicates that the early experiments yielded substan-
tial information gain about this relation.
To better understand how different synthetic factors contribute

to the overall total score, we performed a SHapley Additive ex-
Planations (SHAP) analysis on the GPR model to evaluate the
relative contributions from each synthetic factor to the films’ to-
tal score (more details are provided in the Methods section).[29,30]

The SHAP summary plot in Figure 3e, where red points indi-
cate high feature values, blue points represent low values, con-
firms that RH during spin coating is the most influential factor,
while annealing time has the smallest impact; annealing tem-
perature and antisolvent drop time exhibit intermediate contri-
butions. Figure 3f further highlights that all four synthesis pa-
rameters have measurable importance in the model’s output,
demonstrating that, despite RH having the highest influence,
the remaining parameters still play non-negligible roles. To eval-
uate feature interdependence, we added a Pearson correlation
heatmap (Figure S13, Supporting Information) in addition to the
SHAP analysis, which shows low off-diagonal coefficients among
the four synthesis parameters. Together, Figure 3e,f and Figure
S13 (Supporting Information) demonstrate that while RH is the
dominant factor, the other synthesis parameters independently
and meaningfully contribute to the film quality. Based on these
insights, next, we used the GPR prediction to select experimental
conditions formore detailedmanual in situ PL characterizations.

2.3. Manual in Situ PL Characterization to Gain Mechanistic
Insights and Explain the Total Score

The SHAP analysis identified the RH during spin coating as the
most important feature contributing to the total score. As a next
step, we identify experimental conditions based on the GPR pre-
dictions by illustrating the best (99th percentile) and worst (1st

percentile) synthesis–property relationship windows (Figure 4a).
Then, we manually collect in situ PL measurements (see Meth-
ods section for a description of the setup). Since the antisolvent
dropping during spin coating triggers nucleation and growth,[31]

we investigate the correlation between nucleation and growth
dynamics in different RHs, choosing the ideal antisolvent drop
times at 5, 25, and 55% RH (Figure 4b–d). The antisolvent drop
times predicted by the GPR were 35, 40, and 40s of the total spin
coating time for 5, 25, and 55% RH, respectively. These drop
times correlate well with literature reports.[32,33]

The PL signals appear immediately when dropping the anti-
solvent (illustrated by the vertical narrow window, Figure 4b), in-
dicating perovskite nucleation.[34,33] From low to high RH, the fi-
nal PL emission position was observed at 1.63, 1.62, and 1.58 eV,
respectively (Figure 4c). Clearly, the higher the RH during spin
coating, the larger the magnitude of the red shift, defined as the
difference between the initial/final center peak positions. It in-
creases from 27 to 50 meV, and 61 meV at 5%, 25%, and 55%
RH, respectively. Furthermore, the PL intensity constantly drops
from low to high RH. The final peak position of 1.54 eV is not
reached during spin coating, because the film requires subse-
quent annealing to evaporate the MACl additive and the residual
Lewis base molecules in the intermediate phases.[15] This indi-
cates a correlation between RH, MACl additive, and the nucle-
ation/growthmechanism. The strong interaction between hygro-
scopicMACl and thewatermolecules can lead to a destabilization
ofMA-rich 𝛼-phase nuclei related to enhancedMACl evaporation
at higher RH.[12] This can also be seen in themagnitude of the PL
shift, which is the largest at the highest RH because of less MA
incorporation. At high RH, 𝛼-FAPbI3 nuclei become less stable
at room temperature because the lattice constant is too small to
form 𝛼-phase. Instead, the thermodynamically more stable delta
phase will form.[25] Lastly, Figure 4d summarizes the integrated
PL spectra during the antisolvent dropping with a single Gaus-
sian fit to the data. The fit quality is the best at high RH and the PL
peak FWHM is the narrowest, likely because of better nuclei uni-
formity and more homogeneous nucleation. In contrast, a broad
emission peak is observed at both 5% and 25%RH.At these lower
RHs, more MACl is present to facilitate nuclei with a wider com-
positional variation where the MA+ cation from the MACl addi-
tive initially participates in forming an intermediate phase (e.g.,
MAxCsyFAzPb(I,Cl)3), as well as heterogeneous nucleation. Both
can explain the broader FWHM.Heterogeneous nucleation is de-
sirable to facilitate perovskite growth with preferential orienta-
tion, enhanced crystallinity, reduced defect formation, and grain
boundaries to result in pin-hole free, high-quality MHP films.[35]

It has been reported before that MA+ fromMACl is incorporated
in the perovskite intermediate phase at room temperature.[15]

Scanning electron microscopy (SEM) images taken at different
RH levels illustrate poor substrate coverage if films are made un-
der high RH, while uniform films (with full coverage) are ob-
served at 5, 15, 25% RH (Figure S14, Supporting Information).
By adjusting the antisolvent drop time, similar MHP film qual-
ity can be obtained in a relative humidity window between 5%–
25%, as confirmed by X-ray diffraction (XRD), time-resolved PL
(TRPL), and SEMmeasurements (see Figure S14, Supporting In-
formation). The lifetimes at low to moderate RH are comparable
to literature values for Cs0.1FA0.9PbI3.

[36,37] The highest lifetime
was observed for the samplemade at 55%RH, which is explained
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Figure 4. Using GPR predictions to inform selected manually performed in situ PL measurements at increasing RH levels (top to bottom: 5, 25, and
55% RH). a) Predicted synthesis–property relationship windows for the top and bottom 1%. b) Contour plots representing the evolution of PL spectra
over time collected during the spin coating and antisolvent dropping. The vertical line illustrates the antisolvent drop time. c) Individual PL spectra taken
at different times during the spin coating. d) Averaged PL spectra appearing during the antisolvent dropping with a single Gaussian fit.

by the large μm-sized grains obtained from a lower nucleation
density and correlates with literature reports.[13] In summary, de-
creasing the energetic barrier to form heterogeneously nucleat-
ing 𝛼-FAPbI3 can be achieved through fine-tuning of the RH for
Cs0.1FA0.9PbI3 with 10 mol% MACl additive. To explore this fur-
ther, the interplay between RH and MACl additives presents a
successful avenue to control the CsxFA1−xPbI3 crystallization.

3. Conclusion

Through the implementation of the closed-loop AutoBot plat-
form, we demonstrated the synergy between automated thin film
synthesis characterization, dimensional data reduction and fu-
sion, and AI-guided parameter space exploration. ML was used
to predict synthesis–property relation maps, which connect the
fabrication parameters (annealing temperature, annealing time,
antisolvent drop time, and spin coater RH ranging from 5% to

55%) to the predicted film total score. The total score was con-
structed through data fusion of spectral and imaging data, and
themaximumuncertainty of the predicted synthesis–property re-
lationmaps is about one standard deviation. After experimentally
sampling less than 1% of the possible 5000+ combinations, the
learning rate dropped significantly to ≈2%, confirming the ef-
fectiveness of the closed-loop exploration approach. Feature im-
portance ranking through SHAP analysis revealed the RH dur-
ing spin coating as a major contribution to the total score. In the
last step, we validated the predicted synthesis-property relations
throughmanual in situ photoluminescence characterization dur-
ing the spin coating step at different RHs. Our data imply that
higher RH aids methylammonium chloride additive vaporiza-
tion, as evidenced by the final PL peak position and total peak
position shift. Simultaneously, it leads to less stable nuclei be-
cause of the interplay of photoactive 𝛼- and non-photoactive 𝛿H-
phases as seen in the overall lower PL intensity.We reveal that the
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RH decreases the energetic barrier to form heterogeneously nu-
cleating 𝛼-FAPbI3 in the presence of MACl. This demonstrates
a successful avenue for controlling the Cs0.1FA0.9PbI3 crystalliza-
tion. By adjusting the antisolvent drop time, similar MHP film
quality can be obtained in a relative humidity window between
5%–25%, lifting the need for stringent atmospheric control. Our
AutoBot MAP accelerates the screening of the synthesis design
space, reducing the time cost needed to define global maxima in
the synthesis parameter window. This presents a significant step
toward establishing autonomous laboratories for the optimiza-
tion of synthesis parameters. We envision this closed-loop ap-
proach to be of use for a wide range of materials, including poly-
mers sol-gel synthesized oxidematerials, which will likely be rou-
tinely implemented in future materials synthesis optimization
efforts.

4. Experimental Section
Materials: Cesium iodide (CsI, 99.999%), anhydrous N, N-

dimethylformamide (DMF, 99.8%), dimethyl sulfoxide (DMSO, 99.9%),
and chlorobenzene (CB, anhydrous, 99.8%) were purchased from
Sigma–Aldrich. Lead(II) iodide (PbI2, 99.99%) was purchased from
Tokyo Chemical Industry (TCI). Formamidinium iodide (FAI, 99.99%)
and methylammonium chloride (99.99%) were purchased from Great-
cell Solar Ltd. All reagents were employed as received without further
purification or additional treatment.

Thin Film Precursor Preparation (Stock Solutions): Thin films were pre-
pared with 1.6 m precursors based on Cs0.1FA0.9PbI3 by dissolving 26 mg
CsI, 154.8 mg FAI, 461 mg PbI2, 6.8 mg MACl in 0.500 ml DMF, 0.125 ml
DMSO, and stirring for 2–3 h. Stock solutions were prepared in a N2
glovebox, stored in a N2 glovebox, and used for up to one week. The
Cs0.1FA0.9PbI3 perovskite composition was chosen because of its better
relative stability compared to FAPbI3.

[38] Different MACl additive contents
ranging from 5 to 40 mol% were used in previous reports, varying de-
pending on the precursor chemistry as well as deposition atmosphere.[39]

Based on these numbers and preliminary stability tests, 10 mol% MACl
was selected.

Poly(methyl methacrylate) (PMMA) polymer dispersion was made by
dissolving 10 mg of PMMA in 1 mL Chlorobenzene.

Substrate Cleaning: 15 × 15 mm2 glass substrates were sonicated in
soap water, DI water, acetone, IPA solvent for 10–15 min each. The sub-
strates were then dried with N2 and treated with UV-Ozone for 60 min
before use.

Thin Film Preparation: Spin coating was performed at 1,000 rpm for
10 s, followed by 5000 rpm for 15–45 s. The antisolvent chlorobenzene was
dropped at 15–45 s of the total spin coating duration and 10 s before the
spin coating ended. The total spin coating time was 25–55 s, depending on
the antisolvent drop time. The boundaries step sizes for the four synthesis
parameters were set as follows: annealing temperature (100–200 °C, step
size of 10 °C), annealing duration (5–60 min, step size 5 min), antisol-
vent drop time (15–45 s, step size 5s), and RH during spin coating (5%,
15%, 25%, 35%, 45%, 55%, step size 10%). The RH in the spin-coater
was controlled between ≈5–55% via purging dry or wet N2 into the spin-
coater during deposition. The wet N2 gas was obtained through bubbling
N2 through water. The humidity in the spin-coater was monitored using
an AHT20 humidity sensor. The RH during spin coating was adjusted with
5% precision (i.e., 0–5%, 10–15%, 20–25%, 30–35%, 40–45%, 50–55%)
was referred to by the upper limit at each step, e.g. 0–5% is mentioned as
5% RH so on. We note that the RH upper bound was set to 55%. However,
the overarching goal of our study is to develop a generalizable workflow
to predict the outcome (total score) for the four synthesis parameters. Al-
though we choose annealing temperature, annealing duration, antisolvent
drop time, and spin coater RH, as well as their boundary step sizes, the
framework could be modified and other parameters as well as different
boundaries can be used as relevant to the material system and particu-

lar laboratory setting. In this study, we limited the spincoater humidity
to the average indoor humidity in the USA, which generally stays below
60%. Thin film annealing was performed in the fume hood, where RH is
recorded but not controlled. For the batches reported here, the fume hood
RH was between 40–60% (measured far away from the hot plate). Since
RH is temperature dependent, it was also measured in close proximity to
the sample on the hot plate (see Table S4, Supporting Information). After
sample annealing, the films are coated with a Poly(methyl methacrylate)
(PMMA) polymer protection layer within 5 min to enhance the stability
of the perovskite film, ensuring reliable data during characterization.[16]

It is noted that all the thin film synthesis characterization was performed
in an ambient atmosphere at an oxygen content of ≈21% by volume. In
a prior study it was found for MAPbI3 that oxygen might be linked to the
formation of PbI2.

[40] The diffraction patterns in Figure S14 (Supporting
Information) do not show any evidence of PbI2. Additional studies will be
needed to draw clear conclusions.

Thin Film Characterization: Home-built optics were used for the in-
line optical characterizations described here. UV–vis transmission spec-
tra were collected using a Thorlabs Quartz-Tungsten-Halogen (QTH 10)
white light source. The transmitted signal was collected with a fiber-
coupled Flame spectrometer with CCD detector array (FLAME-S-VIS-NIR-
ES, FLMS12833). A line scan measurement consisting of eight spots was
performed off-center.

Spectral PL measurements in transmission mode were acquired using
a 530 nm fiber-coupled LED (M530F2) and a 550 nm shortpass filter. The
emission signal was collected after a 600 nm longpass filter with a fiber-
coupled Flame spectrometer with CCDdetector array. PL imaging data was
conducted in a transmission geometry. A 405 nm LED (Thorlabs M405L4)
served as the excitation light source. The LED light was collimated using a
25mmplano-convexN-BK7 lens (Thorlabs) diffused by a patterned square
diffuser (Thorlabs ED1-S20-MD) tomatch the shape of the deposition sub-
strates. The excitation light was filtered using a 450 nm short-pass optical
filter (Thorlabs FESH0450), while the emission was isolated with a 550 nm
long-pass optical filter (Thorlabs FELH0550).

PL images were captured using a high-resolution CMOS camera (ZWO
ASI294MC) equipped with a 2x macro lens (Laowa Ultra-Macro APO).
Each image had a resolution of 4144 × 2822 pixels, with a nominal pixel
size of 6 μm. Exposure times were automatically adjusted for each sample
but typically ranged between 2–8 μs.

Each sample is characterized spectroscopically by line scans taking
eight UV–vis transmission and PL spectra across a sample (Figures S3 and
S4, Supporting Information) through a PL image (Figure S5, Supporting
Information), respectively. Figure S10 (Supporting Information) summa-
rizes the means and standard deviations of these eight measurements for
all samples across all batches for UV–vis (a) and PL spectra (b). Given that
the standard deviation of most of the samples is relatively low, in the sub-
sequent analysis, we only consider the mean values per sample. Synthesis
characterization of a batch that took between 30–90 min is dominated by
the annealing duration.

Data Processing & Dimensionality Reduction: To analyze the UV–vis
spectra, we defined a transmission ratio to perform a computational analy-
sis designed to characterize spectral deviations from ideal behavior. First,
the Tauc plot analysis was performed to determine the optical bandgap
of the sample by converting the measured transmission spectrum into
the absorption coefficient, 𝛼(𝜆). The collected spectral data were first cor-
rected by accounting for dark current reference intensity, followed by ap-
plying Gaussian smoothing to reduce noise. The absorption coefficient
was then computed using the Beer-Lambert law, where the optical thick-
ness was assumed to be roughly constant at 700 nm based on scan-
ning electron microscopy cross-section images. The photon energy (h𝜈)
was calculated from the wavelength using the relation h𝜈 = 1240/𝜆, and
the Tauc exponent (n = 2) was chosen for a direct bandgap material.
A linear fit was applied to the Tauc plot within a selected energy range
(1.54–1.58 eV) to determine the bandgap energy by extrapolating to the
x-axis. The estimated bandgaps, as shown in Figure S7 (Supporting Infor-
mation) (between 1.44–1.53 eV), were then averaged, resulting in a mean
bandgap of 1.50 eV, corresponding to a wavelength of 826 nm. Consider-
ing that there are differences in the syntheses, such as through additives
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or the synthesis environment, which might affect the bandgap, this num-
ber is in agreement with the literature on Cs0.1FA0.9PbI3.

[41,42] This ab-
sorption feature was used to divide the transmission spectra into four
areas, using the trapezoidal rule, as shown in Figure S8 (Supporting In-
formation), followed by a computational analysis procedure designed to
characterize spectral deviations from ideal behavior. The ideal behavior
was assumed to be a step function, with 0% 100% transmission at wave-
lengths below and above the bandgap, respectively. High transmittance
above the bandgapwavelengthwas previously linked to low light scattering
and, therefore, uniform smooth filmmorphology.[43] The metric from UV–
vis transmission spectra is the ratio of area 1/area 2 (Figures S7 and S8,
Supporting Information), with higher ratios reflecting thicker films, better
substrate coverage, and higher content of the 𝛼-FAPbI3 phase rather than
𝛿H-FAPbI3. Although the theoretical limit approaches infinity, that is not
possible experimentally, as some degree of scattering will be observed.
Experimentally obtained UV Vis ratios ranged from 1–5. The standard de-
viation of the UV–vis metric per batch is listed in Table S2 (Supporting
Information).

Photoluminescence (PL) intensity analysis was performed using spec-
tral PL data, which was corrected for dark counts and reference light
source spectrum before applying a Jacobian transformation to convert
wavelength-dependent intensity into energy-dependent intensity. The Ja-
cobian transformation was applied using the relation J(E) = 1240/E2 to
ensure a proper representation of PL spectra in the energy domain.[44] The
transformed PL spectrum was then fitted using a combination of a linear
background a Pseudo-Voigt peak function, which accounts for both Gaus-
sian and Lorentzian broadening effects. This peak function is frequently
used for the evaluation of PL spectra, as for example described in the SI[45]

or for the analysis of multiband PL spectra.[46] The peak integration was
performed using numerical integration (trapezoidal method) over the fit-
ted peak component, providing an area-under-the-curve (AUC) value that
quantifies the total emitted PL intensity. Figure S6 (Supporting Informa-
tion) illustrates a significant difference in PL intensity for samples made
in extremely different RH, but little variation in FWHM. Consequently, the
AUC was chosen as the PL metric. The standard deviation of the PL metric
per batch is listed in Table S3 (Supporting Information).

The PL imaging heterogeneity metric was derived from PL images,
which were first preprocessed to remove extraneous elements such as the
sample holder, followed by normalization to standardize image intensity
and minimize variations due to lighting conditions. After preprocessing,
three quantitative features were extracted to characterize spatial structural
variations in PL emission, as shown in Figure S9 (Supporting Informa-
tion). The first feature, standard deviation, quantified spatial fluctuations
in PL intensity across the sample, capturing variations in emission uni-
formity. The second feature, entropy, was computed from the normalized
histogram of pixel intensities, providing a measure of disorder and defect-
induced variations under different humidity conditions. The third feature,
radial intensity standard deviation, was determined by segmenting the im-
age into concentric rings of 50-pixel width, computing the average inten-
sity within each ring, and identifying local extrema in the resulting intensity
profile. A higher number of extrema indicated non-uniformity in the PL re-
sponse, which is associated with defects. To quantify this, the intensity
profile was divided into sub-intervals, and the variance within each inter-
val was computed. Since a greater number of extrema suggested higher
defect density, a penalty was applied using the equation

Radial Intensity Standard Deviation = N

√√√√ N∑
i

Var (i) (1)

where N represents the number of sub-intervals, Var(i) represents the vari-
ance of each interval. This approach effectively penalized samples with
greater structural inhomogeneity, ensuring that more defective samples
received a higher heterogeneity metric. Spin coating is a radial coating
process where the robot applies the liquid coating solution to the cen-
ter of the substrate, which is then spun at high speed. The centripetal
force causes the liquid to spread radially outward across the substrate sur-
face. This coating process can result in radial (unwanted) features, e.g., if

the antisolvent timing is not perfect (see sample photos in S2). Conse-
quently, this is an important metric to take into account when evaluating
film homogeneity. Finally, the three features were combined into a single
heterogeneity metric using a weighted summation, with standard devia-
tion, entropy, and radial intensity standard deviation assigned weights of
20%, 10%, and 70%, respectively. This integrated approach enabled a sys-
tematic comparative evaluation of perovskite heterogeneity across differ-
ent synthesis conditions and humidity environments, providing a robust
framework for assessing film stability. The PL imaging heterogeneity met-
ric is supposed to be as small as possible for homogeneous samples taken
as the additive inverse (i.e., 1 – PL imaging metric).

Total Score: To calculate the total score, each of the three features
was given a weight based on its significance compared to ground truth
samples made by a human expert in a N2-filled glovebox. With the goal
of achieving optically dark, smooth, high-quality, uniform, fully covering
halide perovskite thin film samples, the weights of 40-20-40 for UV–vis –
spectral PL – PL imaging, respectively, were assigned. UV–vis and PL imag-
ing was each given a higher weight (40%) due to their direct correlation
with film morphology uniformity, respectively. Spectral PL measurements
were weighted at 20% because, on one hand, high PL emission intensity
reflects high material quality; however, PL intensity is also influenced by
morphological features. Homogeneous and fully covering polycrystalline
thin films are desirable, butresult in lower PL emission intensity than mi-
crocrystals withhigher PL emission intensity while only sparsely covering
the substrate (see Figure S6, Supporting Information). Lastly, the standard
deviation of PL spectral data compared to UV–vis data (Tables S2 and S3,
Supporting Information) is larger. All these considerations led to the de-
cision of choosing the weights of 40-20-40 for UV–vis – spectral PL – PL
imaging.

Manual In Situ Photoluminescence Measurements: In situ PL measure-
ments were performed during spin-coating under controlled relative hu-
midity (RH) conditions. A home-built optical setup consisting of a 405 nm
laser diode, a plano-convex lens, a 450 nm long-pass filter, and a fiber-
coupled Ocean Optics spectrometer (QE pro) calibrated by the manufac-
turer was used. The optical setup was placed over the spin coater to char-
acterize the spin coating step. The RH in the spin coater volume was con-
trolled by bubbling N2 through water, adjusting the gas flow rate. Spectra
were recorded every 100ms during themeasurement. PL emission spectra
were fitted using Pseudo-Voigt peak fitting after the Jacobian transforma-
tion to the energy scale. To illustrate the averaged spectra when dropping
the antisolvent, we integrated 30 spectra in the time frame of 3 s. Fitting
was done with Voigt peak fitting for a single peak.

Machine Learning: Machine learning optimization techniques could
be used to model the complex relationship between the process param-
eters and the film properties. Specifically, Bayesian optimization with a
tailored acquisition function was implemented to explore and predict the
film properties efficiently for any combination of the process parameters.

Gaussian Stochastic Process: GPR modeling was used to create
synthesis-property maps relating the total score of the film to the pro-
cess parameters. Among other ML techniques, GPR was chosen for its
distinctive capabilities. Using relatively small datasets, it could efficiently
stochastically approximate complicated (unknown) latent functions relat-
ing film synthesis parameters to quantifiable film properties. Its stochastic
nature allows it to inherently quantify uncertainty, differentiating between
aleatoric uncertainty, linked to inherent experimental results variability,
and epistemic uncertainty, linked to the lack of enough data for accu-
rate predictions. The uncertainty quantification capability of the GPR is es-
sential for informed decision-making during parameter space exploration.
This uncertainty quantifies the GPR model’s confidence in its predictions,
where lower uncertainty indicates higher confidence, while higher uncer-
tainty suggests less reliable predictions. Moreover, unlike other machine
learning models, the GPR model provides explicit, interpretable insights
into the properties of the latent function. Additionally, GPRmodeling does
not require explicit specification of the functional form of the latent func-
tion, which becomes challenging to identify with high-dimensional param-
eter spaces.

GPR modeling was used to predict the films’ total score as a function
of the process parameters x = {x1, x2, x3, x4} ∈ X ⊂ R4. Here, the consid-
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ered parameter space is a 4D Euclidean bounded domain composed of the
antisolvent drop time (x1), annealing temperature (x2), annealing time
(x3), and spin-coater relative humidity (x44). The total score was consid-
ered an unknown latent function f (x) that could only be sampled using
noisy measurements y (x)= f (x)+ ɛ (x), with ɛ (x) being an independently
identically distributed zero-mean noise. In this study, y (x) corresponds to
the experimentally measured total score for each sample. To better quantify
measurement variability, four samples were tested under each experimen-
tal condition x, referred to here as a batch, and these observations were
incorporated into the GPR model. With this definition, the GPR provides a
stochastic representation of the total score by characterizing a probability
distribution for f (x). This was accomplished by assigning a prior multi-
variate normal probability distribution (E[f (xi)], Cov[f (xi), f (xj)]) ∀ i, j ∈
{1, 2,… , n} with n being the number of tested data points to the latent
function. This prior normal distribution is characterized by a prior mean
vector E[f (xi)] = 𝝁(xi;𝚯) and a covariance matrix Cov[f (xi), f (xj)] = K =
k(xi, xj;𝚯), where 𝝁 is a prior mean function and k is a positive semi-
definite kernel function acting on all pairs {xi, xj}. Both functions depend
on hyperparameters that are included in 𝚯. The prior mean function en-
codes the expected general trend of the latent function over the parameter
space prior to data collection. The film quality was expected to vary in the
parameter space, but with an unknown trend. To incorporate this informa-
tion while not biasing the predictions, the prior mean was chosen as a lin-
ear function of the four process parameters with slopes and an intercept to
be learned from the data. On the other hand, the kernel function, the main
component of a GPR model, acts as the covariance operator. It estimates
the covariance between two latent function values f (xi)and f (xj) based on
the data points xi and xj, even if they were not tested yet. Moreover, the
kernel function estimates the uncertainty linked to the lack of enough data
for accurate predictions— the so-called epistemic uncertainty — which is
a key component in active learning efforts aiming toward efficient param-
eter space exploration. One of the most used kernel functions is the sta-
tionary 𝜈 = 3/2 Matérn kernel that computes the covariance based on the
Euclidean distance between xi and xj. Since the parameter space is com-
posed of four parameters with different ranges and possibly different decay
rates in the covariance, an anisotropic kernel function was used, with each
parameter having its length scale determined by automatic relevance de-
termination. Following the principles of Bayesian inference using the prior
normal distribution p(f |𝚯) =  (𝝁(x), k(xi, xj)), GPR predicts the poste-

rior distribution of the latent function p (f *|y,𝚯), where f ∗ = f (x∗i ) are the
predictions at unobserved points in the parameter space x∗i , by incorporat-
ing a likelihoodmodel defined over noisy data y = y(xi) ∀ i ∈ {1, 2,… , n}.
This likelihood characterizes the probability of observing y given f, mod-
eled as p(y|f ,𝚯) =  (f ,V(Θ)), where Vii = 𝜎n

2 (xi;𝚯) is a diagonal noise
matrix with entries calculated using the noise function 𝜎n

2 (xi) that also
depends on hyperparameters𝚯. The noise function is used to quantify the
aleatoric uncertainty that stems from the data variability. In this work, it is
assumed that the variability of the total score is constant throughout the
parameter space. To combine the above into a mathematical formulation,
the GPR model is written as

y (x) = f (x) + 𝜖 (x) (2)

f (x) ∼ GP
(
𝜇 (x) , k

(
xi, xj

))
(3)

𝜇 (x) = c1x1 + c2x2 + c3x3 + c4x4 + c5 (4)

k
(
xi, xj

)
= 𝜎s

2
⎛⎜⎜⎝1 +

√
3

√√√√ 4∑
m=1

(xim − xjm)
2

lm

⎞⎟⎟⎠ exp
⎛⎜⎜⎝−

√
3

√√√√ 4∑
m=1

(xim − xjm)
2

lm

⎞⎟⎟⎠(5)
𝜖 (x) ∼ 

(
0, 𝜎n

2 (x) = c6
)

(6)

resulting in a set of hyperparameters 𝚯 = {c1,c2,c3,c4,c5,c6,𝜎s,l1,l2,l3,l4}.
Within the prior mean hyperparameters {c1,c2,c3,c4,c5} are the slopes of
the linear trend in the 4D of the parameter space and c5 is the intercept.

Within the kernel function, the signal variance, 𝜎s, quantifies the epistemic
uncertainty and the length scales, {l1,l2,l3,l4}, control the decay rate in co-
variance in each dimension. Finally, the noise function variance, with a
hyperparameter c6, quantifies the data variability. These hyperparameters
must be evaluated to fully characterize the GPR model to predict the total
score at previously unseen points. This is usually done by estimating the
values of the hyperparameters that maximize the log-likelihood of observ-
ing the data.

Bayesian Optimization: Efficiently exploring the parameter space re-
quires carefully identifying experiments that lead to themaximum informa-
tion gain about the halide perovskite. This is especially important given the
many process parameters their complex interactions influencing themate-
rial properties. Traditional approaches rely on time-consuming, resource-
intensive grid searches or random sampling methods. These methods
frequently lead to inefficiencies in the exploration process, either by con-
ducting insufficient experiments that result in inaccurate predictions or
by performing excessive experiments that incur unnecessary costs. In
this context, Bayesian optimization (BO) can intelligently navigate high-
dimensional parameter spaces.

BOwas used to efficiently explore and predict the total score at any point
in the parameter space X⊂R4. BO has been implemented in several fields
as an efficient approach to optimizing black-box functions relating pro-
cess parameters to key performance measures.[24,47–49] In particular, this
efficient approach is well-suited for perovskite optimization, as the experi-
ments involved are expensive and time-consuming. BO is a sequential de-
sign approach composed of two key components: a probabilistic model,
often a GPRmodel, to capture the current understanding of the perovskite
total score as a function of the process parameters, and an acquisition func-
tion to guide the experimental process. The choice of the acquisition func-
tion depends on the BO objective. BO is mostly used for optimizing the
parameter space, where the aim is to identify the value of the parameters
that maximize the output of interest. For this purpose, studies often im-
plement the Expected Improvement acquisition function, which balances
the space exploration to escape local optima on the one hand, and space
exploitation to quantify the global optima accurately on the other hand.[50]

Another acquisition function is the upper confidence bound, which uses
both predictedmean uncertainty from theGPR to identify the next set of ex-
periments that maximize the output.[51] While the objective of these func-
tions is to maximize the output, the aim of our work is to efficiently explore
the parameter space without focusing on one function property in partic-
ular. Here, the total correlation acquisition function was used to identify
the points in the parameter space expected to maximize the information
gained from the next experiments. Specifically, it identifies the new points
in the parameter space x∗ whose latent function values (predicted halide
perovskite total score) are least correlated with each other, the total scores at
the previously tested points x. Mathematically, the total correlation iden-
tifies x∗ that minimizes the Kullback-Leibler (KL) divergence[52] between
two distributions. The first is the joint prior distribution of the noiseless
function values at x and x∗ with their correlation calculated by the ker-
nel function. The second is the joint distribution of the noiseless function
values, assuming that they are independent. This is illustrated using the
following equation

KL (p (f (x) , f (x∗)) ||p (f (x)) .p (f (x∗))) = KL(A||B) (7)

A ∼ 

([
𝝁 (x)
𝝁 (x∗)

]
,
[
k (x, x) k (x, x∗)
k (x∗, x) k (x∗, x∗)

])
(8)

B ∼ 

([
𝝁 (x)
𝝁 (x∗)

]
,
[
k (x, x) 0

0 k (x∗, x∗) I

])
(9)

The aim is to identify x∗ that minimizes this KL value, resulting in x∗

that are the least correlated with each other and with x.
After performing experiments at the identified points and before updat-

ing the GPR model with the new data, the total score outliers in each batch
(four samples synthesized at the same point in the parameter space) were
identified and removed using the interquartile distance method. With this
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method, the total score values that lie above the 75th percentile or below
the 25th percentile of the batch data by a distance of more than 1.5 the
standard deviation are considered outliers. In addition, manual inspection
of outcomes was done to exclude points where parts of the experiment did
not proceed as expected.

SHAP Analysis: A Bayes Gaussian Process-based SHAP (BayesGPR-
SHAP) analysis was conducted to assess the contribution of each syn-
thesis condition to the total score, building on the stochastic SHAP value
framework developed by Chau et al. for GPRmodels.[29,53] In this study, an
anisotropic Matérn kernel with 𝜈 = 3/2 was employed to capture feature-
specific correlations within the GPR, ensuring consistency with the GPR
model used for optimization in this work. Unlike conventional determin-
istic SHAP methods, BayesGPR-SHAP accounts for both predictive uncer-
tainty (from the GPR posterior) and estimation uncertainty (due to finite
coalition sampling), providing more reliable uncertainty-aware feature at-
tributions. This method enables the extraction of both local and global
explanations, where local explanations break down the model’s output at
the individual data point level, identifying how each synthesis condition
contributes to a specific prediction, while global explanations summarize
feature importance by averaging the absolute local Shapley values across
all data points, offering a comprehensive measure of each feature’s overall
influence. The more positive the SHAP values are, the higher the positive
contribution to the total score (i.e., contributing to higher total scores). The
more negative they are, the higher the negative contribution to the total
score (i.e., contributing to lower total scores). For the global explanations,
the mean absolute SHAP values indicate how important a specific feature
contributes to the total score. The higher the values, the more important
this feature is. From the bottom feature to the top feature, they are becom-
ing more important to the total score.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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