Published on 30 September 2025. Downloaded by University of California- Davis on 9/30/2025 6:46:20 PM.

Chem Soc Rev -

¥ ROYAL SOCIETY
OF CHEMISTRY

REVlEW ARTICLE View Article Online

View Journal

\ '.) Check for updates ‘

Cite this: DOI: 10.1039/d5cs00715a

Received 26th June 2025

DOI: 10.1039/d5cs00715a

rsc.li/chem-soc-rev

“ Department of Materials Science and Engineering, University of California,
Davis. 1 Shields Ave, Davis, CA, 95616, USA. E-mail: mleite@ucdavis.edu

b Molecular Foundry Division, Lawrence Berkeley National Laboratory, 1 Cyclotron
Rd., Berkeley, CA, 94720, USA

Abigail R. Hering

An Al-accelerated pathway for reproducible
and stable halide perovskites

Abigail R. Hering, 2@ Carolin M. Sutter-Fella > ° and Marina S. Leite 2 *®

Halide perovskites (HPs) have remarkable optoelectronic properties, and in the last decade their
photovoltaic power conversion efficiency and light-emitting diode efficiency have skyrocketed. Despite
the surge in research on these burgeoning materials, two key challenges in the field remain: material
irreproducibility and instability. Their behavior is especially dynamic in response to environmental
stressors, due to complex interactions with the perovskite crystal lattice. In this review, we survey the
latest achievements in HP materials research accomplished with the assistance of artificial intelligence
(Al), through the implementation of automated experimentation and machine learning (ML) data analysis.
Automated synthesis and characterization tackle problems with material irreproducibility by
systematically controlling parameters with very high precision, creating massive datasets, and allowing
methodical comparisons from which unbiased conclusions can be drawn. Al can reveal otherwise
unnoticed trends, inform future experiments with the highest potential information gain, and forecast
future performance. The review concludes with a forward viewpoint of how human-assisted closed-
loop laboratories and shared databases allow halide perovskite materials’ processing, properties, and
performance to be potentially optimized with Al, accelerating the development of highly reproducible
and stable optoelectronic devices.

1. Introduction

The rise of halide perovskites (HPs) for optoelectronics has
opportunistically coincided with recent artificial intelligence
(AT) breakthroughs. Machine learning (ML), which is a subset of

Dr. Carolin M. Sutter-Fella is a
Staff Scientist at the Molecular
Foundry,  Lawrence  Berkeley
National Lab, USA. She received
her PhD from the Swiss Federal
Institute of Technology in Zurich
(ETH, Switzerland) in 2014.
Carolin started her independent
career in 2017 when she was
awarded the Glenn Seaborg
Early Career Fellowship. Her
research vision is to establish a
Carolin M. Sutter-Fella transformative change in our
ability to control matter towards
directed synthesis with real time adaptive control, to enable
materials by design for energy applications. Her research is
devoted to synthesis science of inorganic and hybrid materials
involving robot-assisted synthesis and in situ multimodal
characterization.

Abigail R Hering is a PhD.
Candidate in Professor Marina
Leite’s group in the Department
of Materials Science and Engi-
neering at the University of
California, Davis, USA. Her
research is on applications of
machine learning methods to
understand  degradation  of
halide perovskites.

This journal is © The Royal Society of Chemistry 2025 Chem. Soc. Rev.


https://orcid.org/0000-0002-7080-6953
https://orcid.org/0000-0002-7769-0869
https://orcid.org/0000-0003-4888-8195
http://crossmark.crossref.org/dialog/?doi=10.1039/d5cs00715a&domain=pdf&date_stamp=2025-09-23
https://rsc.li/chem-soc-rev
https://doi.org/10.1039/d5cs00715a
https://pubs.rsc.org/en/journals/journal/CS

Published on 30 September 2025. Downloaded by University of California- Davis on 9/30/2025 6:46:20 PM.

Review Article

Al, has contributed to discoveries in the complex, multi-
dimensional realm of HPs materials’ research. In parallel, the
erratic datasets produced by HPs have resulted in challenging
and compelling case studies being tackled by ML. HPs are an
emerging semiconducting material class that have been the
subject of intense research since their photovoltaic response
was first discovered in 2009." They have several unique pro-
perties, including high absorption coefficients,” tuneable
bandgaps,® defect tolerance,’ and ease of processing.” The
HPs are fabricated from earth-abundant, low-cost materials,
giving them the potential to revolutionize the clean energy
market.® The bulk HP structure has an ABX; chemical formula,
where the A site is a monovalent cation such as Cs, formami-
dinium (FA), or methylammonium (MA), the B site is a divalent
metal cation such as Pb or Sn, and the X site is a halide anion,
such as I, Br, or Cl. The possible constituent ions may exist in
any given ratio, and each composition exhibits unique properties,
thus HPs possess a large, convoluted hyperparameter space.
HPs are much less stable and reproducible than the conventional
Si and III-V semiconductors, especially in the presence of envir-
onmental stressors of heat, oxygen, water vapor, light, and electric
field bias.” This instability is highly dependent on chemical
composition, resulting in several nonlinear trends.®® Al is
being applied to investigate different aspects of these materials’
development, including composition screening,'®™* automated
characterization,”* ™ device optimization,"®"” and device stability
performance forecasts."®>°

In this review, we provide a summary of how Al can accel-
erate the resolution of the remaining challenges in the HP field:
reproducibility and stability. First, we present a timeline of
notable achievements in HP and AI research, as well as in
scientific discoveries and accomplishments that combine the
two. We discuss developments in robotic material synthesis
and high-throughput characterization as accelerated methods
of inferring material properties, by controlling parameters that
are difficult or impossible for a human researcher to control
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and thus ensuring a higher degree of reproducibility. We out-
line a survey of ML objectives that have been applied to
material irreproducibility and environmental instability. Then,
we discuss in detail how AI can make experimental decisions
and inform future promising experiments. Finally, we examine
and evaluate the concept of an Al-informed, closed-loop labora-
tory that encompasses each step of HP development, including
experimental design, material fabrication and characterization,
device testing, and optimization. We anticipate future develop-
ments, as well as future challenges, in this field through the
expansion of sharable, interpretable databases, with automated
data systems and large language model-assisted predictions.
We conclude with an outlook that closed-loop labs with human
input are expediting scientific breakthroughs and brin-
ging sustainable optoelectronics, specifically HPs, closer to
commercialization.

2. Al and halide perovskites: timeline
and interdisciplinary achievements

Fig. 1 displays a timeline of developments in the fields of HPs
and AI and their merging together. The first perovskite mineral,
calcium titanate (CaTiO;), was discovered in the Ural Moun-
tains of Russia in 1839 by Gustav Rose, and its structure
was named after the notable Russian mineralogist Count Lev
>122 In the following years, several more naturally
occurring oxide perovskites were discovered, including barium
titanate (BaTiO;), which has been studied extensively due to its
ferroelectricity.>® HPs, which have a halide instead of an oxygen
at the X site, were first synthesized in 1978,>* but their photo-
voltaic effect was not observed until 2009," when a 3% power
conversion efficiency was recorded. This first device degraded
within minutes, but in 2012, improved solid-state solar cells
were fabricated®?® and recorded by the National Renewable
Energy Laboratory (NREL) research cell efficiency chart.”” There
has been remarkable research progress on the optoelectronic
properties of HPs, with thousands of research articles being
published every year. The first HP LED was synthesized in
2013,%% and the first NREL certified HP/Si tandem cell was
successfully fabricated in 2018. Tandem solar cells show the
greatest potential for commercial use, as they can surpass
the theoretical radiative efficiency limit of single junction solar
cells. HP power conversion efficiencies surpassed 25% in 2020,
and their record efficiency is now 27%>’ for single junction
cells and 34.6% for tandems, which is on par with the best-
performing conventional solar cell materials. HPs are in the

Perovski.

early stages of transitioning from research- to commercial-level,
though there is still significant progress to be made in the field.
Now, Oxford PV in the UK, Tandem PV in the US, and Xianna
and Utmo Light in China, are currently beginning commercial
development of HP and HP/Si tandem solar modules.>*
The field of AI has experienced similar exponential growth.
The term was first coined in 1950, and the first paper on the
topic was published in 1959.% Al is broadly defined as the field
of computers and robots that can analyse information and

This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Number of research papers published per year from 1965-2024 using the SCOPUS search engine, with keywords “perovskite solar cells” or
"halide perovskites” in green, keywords “artificial intelligence”, "Al”, “machine learning” or “machine-learning” in grey, and the combination of all
keywords in magenta. Notable achievements in each field are highlighted with black, green, and magenta stars, including the first intelligent robot (1966),
the report of a supercomputer beating a chess human champion (1997), the first perovskite solar cell and LED (2009 and 2013), and the first automated

synthesis of HPs (2018).

mimic human perception, cognition, and decision making.**
ML, which is a range of algorithms that make predictions based
on data,* is a subfield of Al that will be discussed here in the
context of materials research. Several ML algorithms were
developed in the 1950s, but computers lacked the required
computational power to solve them. The first intelligent robot,
Shakey, which had the ability to move and make decisions
within its environment, was developed in 1966 by the Stanford
Research Institute.*® In 1984, single chip microcontrollers were
developed, and computational power grew following Moore’s
law, which in 1985 stated that the number of transistors on a
microchip would double every two years.’” As computational
power grew further, a notable milestone included the first
supercomputer beating a chess champion, Deep Blue vs. Kasparov,
in 1997.%® In the 2000s, image recognition with convolutional
neural networks experienced breakthroughs.>® In 2022, ChatGPT
was the first large language processing model to be released to the
public,*® making Al freely accessible for the first time.

In 2018, several research groups began applying ML algorithms
to analyse HP behaviour.*'** The first automated synthesis of HPs
produced 95 compositions, and ideal wide-bandgap combinations
that are promising for tandem cells were identified.** Since then,
hundreds of papers have been published applying Al, automation,
and ML to HPs, and this combined research interest shows the
steepest growth. Several of these papers are discussed in more
detail in the following sections, including automation of

This journal is © The Royal Society of Chemistry 2025

fabrication and characterization, ML paradigms, and reprodu-
cibility and stability optimization. There has been a major
emphasis on predicting and optimizing solar cell power con-
version efficiency (PCE), and these discoveries, including fab-
rication recipe optimization, device stack optimization,
additive and passivation strategies, and identification of ideal
storage conditions, have accelerated tandem cell commercial
investment and development.*>™’” Looking forward, as more
optoelectronic applications for HPs are explored, these materi-
als may be used in photodetectors, sensors, lasers, transistors,
spintronics, and more. If stable HP-based photovoltaics
become an established product, they may eventually provide
the energy needed to power the rising Al computational costs.
Additionally, HP spintronics,*® which retain memory states
without input power, may be used as an alternative to the
extremely energy-intensive cloud data storage centres.*® These
developments in HP materials science and AI may create a
positive feedback loop resulting in a computationally advanced
and sustainable future.

3. Halide perovskite materials

The HP crystal lattice structure, ABX; is shown in Fig. 2a. There
are several possible compositions, as the A site may be an
organic or inorganic cation, the B site may be a lead or tin

Chem. Soc. Rev.
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Fig. 2 Cross-section schematic of bulk halide perovskite crystal structure and common degradation pathways. (a) A hybrid organic-inorganic, mixed
halide perovskite. (b) Structure of the photo-inactive, hexagonal delta phase. (c) Evolution of defects including Pbl, formation (black), dangling surface
bonds, and organic decomposition. (d) Segregation of halides into Br-rich (purple) and I-rich (blue) regions.

cation, and the X site is a halide anion. Each site may be
occupied by a fraction of ions as well, which is displayed in
Fig. 2a as a hybrid organic-inorganic mixed-halide composi-
tion. The ability of an ion to incorporate into the perovskite
structure is predicted by the Goldschmidt*® tolerance factor,
which is calculated from the relative ionic size. An ideal factor
of 0.8-1.0 will result in a cubic HP structure.” There are three
phases that form photoactive HPs: cubic, tetragonal, or ortho-
rhombic, which are known as alpha, beta, and gamma phases,
respectively. If the strain is too high, or if the structure is
stressed in some way, the HP unravels, and the material
becomes photo-inactive, which is often a hexagonal, trigonal,
or orthorhombic delta phase® (Fig. 2b). In addition to the
hundreds of possible compositions for bulk HPs, there are
several other possible phases, including double perovskites,
vacancy-ordered perovskites, quasi-2D phases such as Ruddle-
sden-Popper and Dion-Jacobson phases, chiral 2D perovskites,
2D nanosheets, 1D nanowires, 0D quantum dots, and mixed-
dimensional phases.”* The broken symmetry of lower dimen-
sional HPs allows for an even larger composition and property
space, as there is no longer a size restriction on the A-site
organic cation.”® Lower dimensional materials have experi-
enced growing research interest in recent years, due to their
extensive range of possible applications in spintronics, mem-
ristor, and sensing devices.”®

In response to environmental stressors, including light,
bias, temperature, oxygen, and relative humidity, HPs react
and degrade through a variety of mechanisms.>* The degrada-
tion depends primarily on the original chemical composition,
the severity and combinations of the stressors, and length of

Chem. Soc. Rev.

exposure. The most frequently observed degradation pathways
are displayed in Fig. 2b-d, although others are possible. The
delta phase (Fig. 2b) can often coexist with the photoactive
alpha phase at room temperature, meaning both phases are
thermodynamically stable. However, only a small activation
energy is required to begin the phase transition, which may
be induced by defects or exposure to humidity.”> This phase
transition is reversible, and the HP may “heal” from its delta
phase with time or heating.’® Additives, such as MACI, are a
commonly used strategy to mitigate the delta phase formation.
Other strategies include trivalent metal doping, which can
relieve residual lattice stress and promote alpha phase
formation,”” and composition optimization with the appropri-
ate ionic ratios to achieve an ideal tolerance factor.”’

The second mechanism, defect evolution (Fig. 2c), encom-
passes point, line, surface, and volume defects. Point defects
include vacancies, interstitials, and substitutional defects,
which tend to have relatively low formation energies in HPs.
Line defects include edge and screw dislocations, which con-
tribute to nonradiative carrier recombination. Surface defects
include grain boundaries, twin boundaries, and cracks. Grain
boundaries exhibit several unique properties in HPs and can
serve as recombination centres due to ion migration and defect
trapping at interfaces. However, they can also be a source of
self-healing behavior,’® and these self-healing properties can be
further enhanced with functional additives, which are large
molecules that sit inside the grain boundaries, or with dynamic
liquid interfaces, which is an interfacial layer between the HP
and the transport layer. Thermal energy, which can degrade the
HP lattice, activates the reformation of bonds with additive

This journal is © The Royal Society of Chemistry 2025


https://doi.org/10.1039/d5cs00715a

Published on 30 September 2025. Downloaded by University of California- Davis on 9/30/2025 6:46:20 PM.

Chem Soc Rev

molecules®® or triggers the solid-to-liquid phase transition of
the interfacial layer, which passivates surface and grain bound-
ary defects.®® Twin boundaries are most often found in single
crystals, due to asymmetry in the lower-temperature phases.®°
Finally, 3D volume defects encompass voids, pores, and inclu-
sions, all of which are induced during the synthesis stage. The
defects that most often occur in response to environmental
stress are lead iodide formation,®' dangling surface bonds,*> or
organic decomposition (Fig. 3c).**

Another commonly observed degradation pathway is halide
segregation (Fig. 3d). Ionic migration occurs in HPs under
light, heat, or bias exposure, due to the low formation energies
of ionic defects. Iodine interstitials and vacancies specifically
have the lowest activation energies, as determined by first
principles calculations and confirmed by photothermal
induced resonance (PTIR).®* This migration is more prevalent
in grain boundaries than in grain interiors, which is confirmed
by conductive atomic force microscopy (c-AFM).** This discre-
pancy results in localized differences in trap states and electro-
nic band structures, causing nonradiative recombination
centres. Halide migration is usually reversible upon removal
of the stressor, but is detrimental to device operation when
light and bias are present.®® Passivation strategies for all of the
degradation mechanisms discussed primarily focus on compo-
sitional, additive, and interfacial engineering.®®

Both the strengths and weaknesses of HPs arise from their
soft-lattice structure. They are defect tolerant, meaning defects
will not be detrimental to their performance in optoelectronic
devices.®” In contrast, inorganic materials with a rigid crystal-
line lattice, such as silicon (diamond cubic) or gallium arsenide
(zinc blende) used in conventional semiconductor devices,
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require extremely high purity with minimal intrinsic defects
or external contaminants.®® This difference is due to their
strong, covalent bonds, while HPs are held together by a
combination of covalent, ionic, hydrogen, and van der Waals
bonds, making it easier to break the lattice.® These materials
can be synthesized with low-cost manufacturing techniques,
rather than the expensive Czochralski single crystal growth
used for silicon. Polycrystalline HPs can be fabricated through
several different methods, including spin coating, drop casting,
blade coating, gas quenching, slot-die coating, and spray
coating,®>”® but these routes are typically not reproducible or
scalable to industrial solar module sizes. Single crystal HPs
have been grown with methods including inverse temperature
crystallization, in which temperature changes the solubility of a
supersaturated solution, and the Bridgman method, which
grows an ingot from melted powders via a temperature differ-
ential in a tube, among others, but these methods also produce
challenges with reproducibility and scalability, and are not yet
as heavily researched as polycrystalline thin films.”* Currently,
polycrystalline samples result in photovoltaics with higher
power conversion efficiencies despite their increased number
of defects, because of the detrimental effects of surface defects
on single crystal stability.””

HP defect tolerance, property tunability, and ambient pro-
cessing ability all make controlling reproducibility more diffi-
cult. Thus, robotic fabrication techniques have been deployed
to address parameters that are difficult or impossible to control
during human-led synthesis. The various mitigation strategies
introduced, including additives, doping, and interfacial engi-
neering, are often performed on a single composition, and thus
are difficult to extrapolate to all HPs. There is a massive

~
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/ a) Spinbot/Autobot platform

In-line optical
characterization box

=

Liquid handling robot

Fig. 3 Examples of robotic fabrication of halide perovskites. (a) SpinBot/Autobot platform. Adapted with permission’® © 2023 Wiley Advanced. (b) Liquid
handling robot. Photo courtesy of University of Tennessee's Tickle College of Engineering/Shawn Poynter. (c) Perovskite automated spin-coating
assembly line (PASCAL). Adapted with permission®? © 2024 RSC. (d) Nanocrystal synthesis robot, where (1) is the automated pipettes for liquid handling,

(2) is storage for samples and consumables, (3) is the synthesis platform, (4)

is the light source, (5) is the mobile camera, (6) is the microplate reader, and

(7) is the mobile robot for microplate transport. Adapted with permission87 © 2023 Nature.
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parameter space of potential additive and interfacial molecules
to be explored, and therefore understanding of stability strate-
gies may also be greatly improved by implementing automation
and ML approaches.

4. Automation

Automated labs are being implemented for their increased
efficiency, accuracy, and precision, as compared with the con-
ventional trial-and-error or institution-based approach of
human experimenters. Automation also allows repetitive,
menial tasks to be done by a machine, leaving the researchers
with more time and energy to invest in tasks such as experi-
mental design, planning, and analysis. Here, we discuss plat-
forms with various levels of automation, and we emphasize that
autonomous experiments,”> which automate all experimental
steps, including hardware, data collection, data analysis, and
Al-informed decision making, are still emerging technologies.
Other terms, including “self-driving labs”, “closed-loop labs”,
and “materials acceleration platforms (MAPs)”, are sometimes
used interchangeably with autonomous experiments in the
literature,”* though other sources differentiate them. To clarify
their main differences in scope, Table 1 provides a possible
interpretation of each one. Self-driving labs involve a fully
integrated workflow that includes automation of hypothesis
formulation, testing, and refinement steps.”> Closed-loop labs
may include human input and typically involve an objective of
exploration or optimization of a parameter space.”® MAPs have
an underlying goal of accelerating the understanding of mate-
rials’ fundamental properties with the assistance of AL’ The
robotic synthesis labs and high-throughput characterization
experiments discussed below are examples of automated
experiments that expand scientific understanding of HPs’
materials properties and synthesis parameter space.

4.1. Robotic synthesis labs

The primary issues with reproducibility from hand-made spin-
coated HPs are from lack of fine control over the distances,
speeds, volumes, and times of each synthesis step, which may
be uncontrolled because the experimenters don’t consider
them to be parameters. The SpinBot’® is a commercially avail-
able liquid handling robotic platform for the synthesis of thin
films from chemical precursor solutions (Fig. 3a). This setup
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can produce thin films or full solar cell devices through multi-
step deposition, in platforms referred to as SpinBot one,”® the
Autobot,”® and a fully automated spin-coating robot.”® Other
notable materials science research has been done on similar
robotic platforms, using “Polybot”®® for organic thin film syn-
thesis, “Ada” for optimizing organic and palladium films,*' the
“A-lab” for solid-state synthesis of inorganic powders,*” and the
“artificial chemist” for quantum dot synthesis.®

With the Spinbot/Autobot, the effects of input parameters
such as solvent dispense speed, pipette tip height, spin speed,
and antisolvent dispense time and speed, may be explored and
optimized.'® This robotic system can produce dozens of repro-
ducible thin films per day. The HP thin films are characterized
with steady-state photoluminescence (PL), UV-Vis absorption,
and PL imaging or time-resolved PL. These quick optical
characterizations can inform film quality and can be used to
create an optimizable metric. This platform combines high-
throughput synthesis with high-throughput characterization,
which is discussed in the following sections. The Autobot
platform has successfully predicted synthesis-property relation-
ships for HPs fabricated under different atmospheric humidity
conditions, and demonstrated that the role of the additive
molecule during spin-coating and solvent evaporation has a
significant effect.”

Next, the liquid handling pipetting robot can synthesize and
optically characterize hundreds of different HP solutions
(Fig. 3b).'® This method allows rapid compositional screening
and combinatorial analysis of up to 96 compositions at a time
using a 96-well plate. Overall, the system has extremely precise
control of composition and concentration. Decoupled plate
readers allow quick optical characterization, creating large
“in-house” datasets for ML-based analysis. The PL properties
of the vast compositional space can be interpolated, to fully
inform a HP cation-space phase diagram of solid solution
phases. ML applications based on data from this setup will
be discussed in the following sections.

The “PASCAL”, or perovskite automated spin-coating assem-
bly line'? platform was custom built for liquid handling, thin
film spin-coating, annealing, and in-line characterization
(Fig. 3c). This platform has a liquid handling robotic arm
coupled with a spin coater. HP films can be optically character-
ized via PL and with a GoPro camera."”” This information
creates a large compositional dataset, and the optimal stable
compositions can be determined using an ML model, Gaussian

Table 1 Automated laboratories main terminology and corresponding definitions

Term Definitions

Closed-loop lab
Self-driving lab
decision making.””*
Materials
acceleration
platform (MAP)

Autonomous lab

The concept of a lab with “... process automation integrating experimental execution and data acquisition/analysis.
An application of the closed-loop lab concept, or a ¢ system in which automated experiments are integrated with data-driven

185

Another application of the closed-loop concept with advanced materials research goals, or platform which .. .uses methods
of automation and digitalization in material research to accelerate innovation by orders of magnitudes.

9984

The highest level of Al-control, or a platform which “uses advanced decision algorithms to plan and execute a series of

materials experiments iteratively. .. the system autonomously advances through the iterations of planning, experiment,

and analysis.””%°

Chem. Soc. Rev.
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process regression, as the GoPro images are analysed. PASCAL
allows characterization of as-spun thin films as well as films
that have aged under the influence of environmental stressors
such as temperature and illumination, so that fabrication
conditions and compositions resulting in the highest stability
can be revealed.

The nanocrystal synthesis robot®” has been used to fabricate
both colloidal metal nanocrystals and double HP nanocrystals.
It uses automated pipettes for liquid handling and a robot arm
for moving and optically characterizing samples. It also entails
an integrated software that uses supervised ML algorithms to
recognize structure identifying agents (SDAs), which are para-
meters that most significantly affect the crystal morphologies.
Literature data mining was performed to select the initial
synthesis parameters, but this database was expanded with
optical measurements of the synthesized nanocrystals. This
approach allows tuneable morphologies to optimize for a
determined metric, which for the double HPs is PL intensity.
Correlations were determined with a supervised ML algo-
rithm called the sure independence screening and sparsifying
operator (SISSO) approach. The nanocrystal synthesis robot
allowed for inverse design of adjustable nanocrystals with
a desired final morphology, which enables tunability of
properties and design of the most stable HP compositions
and structures.

These robotic synthesis platforms are examples of partial or
fully autonomous MAPs,*® in which AI unifies the entire
experimental process by including coupled characterization,
data analysis, ML, and decision making, with the objective of
exploring and optimizing HP material properties. They can
potentially reduce both intra- and inter-lab bias, allowing more
accurate conclusions to be drawn from ML analysis. Inverse
design, in which a desired, optimal output can be achieved
from altering the experimental inputs, can lead to significantly
improved control and understanding of property-processing
relationships.®® HPs have extremely multifaceted parameter
spaces of processing conditions and dynamic properties, affect-
ing their stability and reproducibility, but MAPs have made
significant progress in addressing these challenges. By control-
ling and optimizing fine experimental details which affect
the complex perovskite crystallization kinetics, such as compo-
sition, concentration, additive molecules and concentrations,
solvent evaporation rates, annealing profiles, sequential
deposition methods, and additive-mediated nucleation,’® these
platforms can produce reproducible samples from which
robust scientific conclusions can be drawn. They are especially
useful when coupled with high-throughput characterization,
which is discussed in the following section.

These methods primarily focus on solution-based pro-
cesses for lab-scale investigations. However, the transition to
industrial-scale fabrication will require techniques such as
printing, blade-coating, or vacuum processing, in order to
grow uniform, larger-area films.’' Vacuum-based processing
requires fine-tuning of deposition rate, temperatures, precur-
sor compositions, and post-treatment conditions. These pro-
cesses could also benefit from automation and optimization

This journal is © The Royal Society of Chemistry 2025
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with Al, as large reproducible films will be necessary for
successful commercial products.

4.2. High-throughput material characterization

High-throughput experiments involve multiple tests performed
simultaneously, either by measuring many data points per
sample or over many samples.”> These experiments are often
carried out with the assistance of robotics or automated work-
flows, so that they produce large datasets that are directly
comparable. A data science driven approach allows the best-
performing and most stable materials to be identified from a
large composition and property space. HPs can be charac-
terized through a variety of techniques to measure the opto-
electronic, structural, and morphological properties, as well
as device stability and performance. Coupled with automated
synthesis, high-throughput characterization provides high
quality data to train ML models with statistically significant
results and minimal bias. Additionally, stability data can be
extracted from in situ and operando experiments, in which a
variable is introduced while the material is being characterized
or while a device is operating. In situ and operando experiments
are especially useful for determining the effects of HP degrada-
tion, as the environmental stressors may be introduced during
characterization experiments or while a solar cell device is
operating. These types of experiments can elucidate degrada-
tion mechanisms of HPs by measuring them in real time.”?
The following examples discuss different high-throughput
characterization techniques and how they are being applied
to furthering the understanding of HP stability and
reproducibility.

Photoluminescence (PL) is an optical method that charac-
terizes wavelength-dependent radiative recombination of photo-
generated charge carriers, revealing optical bandgap and the
presence of multiple phases or band edge trap sites in HPs in
<1 s. Fig. 4a displays high-throughput steady-state PL data,”*
in which ten samples are measured simultaneously for
150 hours while temperature is varied between 15 °C and
55 °C. This is an example of both high-throughput and in situ
characterization, as the HPs are being characterized while
temperature is fluctuating and altering their properties. Thus,
the real-time effects of temperature on the thin films could
be measured and compared between different compositions of
the Cs,FA(;_Pb(I,Br(,_1)); space. Additionally, these measure-
ments produce thousands of comparable spectra that can be
used to train a series of ML models. Then, PL properties of
compositions unseen during model training are predicted with
a high accuracy, and films with moderate caesium content are
revealed to be the most stable to temperature modulation.

PL lifetime can reveal the defect density, and thus the
intrinsic instability of different HPs. The time-resolved PL of
2D PEA (phenethylammonium) iodide perovskite samples with
mixed tin and lead ratios at the B site is shown in Fig. 4b.%®
A high-throughput pipetting robot (Fig. 3b) is used to synthe-
size 96 Pb:Sn ratios between pure lead and tin. The samples are
then characterized with steady state and time resolved PL,
which shows that higher Pb content prolongs PL lifetimes.
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Fig. 4 Examples of high-throughput halide perovskite characterization techniques. (a) In situ PL measurements over several days of temperature
cycling. Adapted with permission®* © 2025 ArXiv. (b) PL lifetime decay of PEAPb,Sn;_yls With varying Sn and Pb ratios. Adapted with permission®® ©
2024 Wiley Advanced. (c) Absorbance spectra of a compositionally graded halide perovskite film from MAPbls to MAPbBr3. Adapted with permission®® ©
2022 Nature. (d) X-ray diffraction of MAPbls thin films with 40 different antisolvents. Adapted with permission®” © 2025 Wiley Advanced. (e) Grazing
incidence wide-angle X-ray scattering with films of varying FAPbIz ratios. Adapted with permission®® © 2024 Wiley Advanced. (f) Scanning electron
microscopy with energy dispersive X-ray scattering of FAg 7MAg.sPb(10 49Bro 2:Clo 3)s films. Adapted with permission®® © 2023 Wiley Advanced.

The proposed mechanism is phase segregation of a PEAPbI,
phase, which establishes charge transfer excitons. 2D HP
structures are more stable than 3D ones due to lack of strain
and charge carrier confinement. There is also significant inter-
est in replacing Pb with less toxic alternatives, of which Sn is
the highest performing, due to its similar electronic structure.
While fully eliminating Pb may not be possible without sacrifi-
cing device performance, mixed Pb:Sn perovskites show pro-
mise for high quality devices while reducing potential negative
environmental and neurotoxic effects. These high-throughput
experiments investigate the entire Pb:Sn composition space
and reveal the defect-rich regions and their effects on phase
segregation and optical performance, ultimately connected to
material stability.

Absorbance of HPs reveals, in addition to the spectrally-
resolved absorbance behaviour of the material, the composition-
dependent bandgap, which is another metric that may be used to
compare stability or reproducibility between samples. Fig. 4c
displays high-throughput absorbance data of a compositionally-
graded film,’® where the MAPbX; film has a gradient in halide
concentration from pure iodine to pure bromine. As expected, the
bandgap varies nearly linearly with halide composition, which
allows for a tuneable bandgap and makes HPs very suitable for
tandem solar cells and several colours of LEDs. This high-
throughput fabrication and characterization of a composition-
ally graded film enable continuous rather than discrete mea-
surements, so that hundreds of mixed HPs can be interrogated
in a short timeframe. The researchers determined that the
degradation of Br-rich regions is driven by hydration, while
the I-rich regions’ changes originated from loss of organic
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components. Intermediate compositions are driven by phase
and halide segregation. This experiment allowed multiple
degradation methods to be discovered simultaneously, which
significantly increased the understanding of the mixed-HP
composition space properties and stability.

High-throughput X-ray diffraction (XRD) characterization
provides structural information to assign crystalline phases.
This measurement can permit a robust screening of materials
by comparing the relative intensities of diffraction peaks
corresponding to HP and secondary or defect phases. This
may be used for evaluation of compositions or synthesis para-
meters to assess film quality, typically through ensuring only
the desired phases are present. Fig. 4d displays XRD patterns of
HP films fabricated in a high-throughput platform while
screening 40 different anti-solvents.”” Whereas the composi-
tion space of HPs has now been extensively studied, most
recipes rely on highly toxic antisolvents,'®® which work by
extracting the solvent from the HP solution, creating super-
saturation, and instigating rapid crystallization, nucleation,
and growth.’®® Antisolvents affect crystallinity and presence
of defect phases, therefore impacting sample reproducibility. In
this work, the antisolvent space is explored through metrics
such as polarity, dispersion, and hydrogen bonding, which are
compared within Hansen sphere solubility space. The authors
identified sustainable hybrid antisolvent systems as well,
revealing superior film properties when mixed methyl acetate
and hexane are used. Optimal antisolvent use can ensure
higher degree of film reproducibility.

Grazing incidence wide angle X-ray scattering (GIWAXS) is
used for probing surface and near-surface structural properties,
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making it ideal for investigating samples that have different
properties at the surface and within the bulk of the material.
Quasi-2D HPs have an even larger composition space than 3D
HPs, and the relative ratios of 2D and 3D precursors may result
in different phase heterogeneities within a sample. Fig. 4e
shows GIWAXS data®® for quasi-2D HPs, where the authors
employed high-throughput solid-solution synthesis and char-
acterization using the platform discussed in Fig. 3b. The quasi-
2D composition space is explored by varying the ratios of 2D
and 3D precursors, which creates samples with a vertical phase
gradient. This systematic, high-throughput characterization
explores phase heterogeneities from the sample surface to
deeper into the bulk of the sample. This example advanced
the understanding of mixed phase behaviours and revealed that
35-55% 3D FAPDI; results in the most stable 2D:3D ratio with a
pure alpha phase, and that ratios outside of this range exhib-
ited mixed 2D phases and 3D delta phase.

Microscopy techniques often require advanced data man-
agement pipelines to become high-throughput, as a single
image contains on the order of tens of megabytes to hundreds
of gigabytes or hundreds to thousands of pixels."®>'%® These
methods allow researchers to compare surface morphologies,
for example of samples fabricated with different techniques,
which is useful to compare the effects of processing on proper-
ties and on reproducibility. Fig. 4f shows high-throughput
scanning electron micrographs (SEM) with electron dispersion
spectroscopy (EDS) analysis.”® The researchers collected 2500
images of large-area HP films fabricated via vacuum proces-
sing, and a combination with EDS analysis was performed on
defect regions of the film to categorize them into pinholes or
wrinkles. Through this high-throughput exploration of the thin-
film surface, there were minimal pinholes observed, as com-
pared with solution-processed films which showed a greater
number of pinholes. The minor wrinkling present in the
vacuum processed films was determined not to be detrimental
to photovoltaic performance. The power conversion efficiency
of films fabricated with vacuum processing showed signifi-
cantly lower standard deviation than those that were solution
processed, which confirmed the HT SEM conclusions that high-
quality, uniform, and highly reproducible films can be synthe-
sized with this technique.

5. Machine learning paradigms

ML, a subfield of Al, is defined as a set of algorithms that can
make predictions or decisions based on data and new
information.*>'%* It can be applied at each step of HP fabrica-
tion and device processing, from composition screening, fab-
rication parameter optimization, characterization of material
properties, transport layer selection, and prediction of optoe-
lectronic device performance.'®'°® To minimize the number of
confounding variables, have better control over experimental
inputs, and increase the amount of available data, automation
has been extremely complimentary to the expansion of ML. Al
can inform future experiments through automated data
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analysis, real-time feedback loops, and integration of multiple
data libraries into single interpretable metrics. Al allows for
hypothesis refinement'®® beyond the human domain experts’
intuition and guidelines. There is an ascending number of HP
research articles employing ML to optimize, predict, or classify
material quality, stability, and performance (120 and 156
publications in 2023 and 2024, respectively).

ML can be broadly categorized as supervised learning,
unsupervised learning, and reinforcement learning. Additional
strategies that do not strictly fit into these categories include
semi-supervised learning, active learning, and optimization.'”
Supervised tasks encompass regression or classification with
labelled data, and while unsupervised tasks involve clustering
of unlabelled data. Reinforcement learning involves maximiz-
ing a reward function over multiple learning iterations.'*®
Exploration and exploitation are two learning objectives, which
seek to find values within a multiparameter space with high
uncertainty and find optimal values with low uncertainty,
respectively.'® Optimization algorithms involve both explora-
tion and exploitation, as they find the global minimum or
maximum of some defined metric and identify regions of
highest and lowest uncertainty. These methods all share the
need for high-quality training datasets, from which the algo-
rithms will extract patterns, trends, and correlations between
variables. Training data may come from simulated data, high-
throughput experiments, or shared databases, and various
literature examples applying ML to HP stability and reproduci-
bility are discussed in the following sections.

5.1. Supervised learning

Supervised learning requires labelled training data with known
answers, which can be either qualitative or quantitative. One of
the simplest supervised regression algorithms is linear regres-
sion, which uses a least-squares curve fitting method to fit an
input and output. Tree-based algorithms, which are based on
decision trees, can be used for both classification and regres-
sion tasks and include random forests, gradient boosting,
extreme gradient boosting, and more. A vast number of studies
have involved deep learning or neural networks, which include
many different types of models such as convolutional neural
networks, long short-term memory, and artificial neural net-
works, and these methods can also be used for both classifica-
tion and regression tasks. Methods such as neural networks
require significantly more data than other models, and flexible
ensemble learning algorithms tend to outperform others when
addressing high-dimensional materials science challenges.""°
The majority of ML case studies applied to HPs have used
regression to predict metrics such as performance or stability.

5.1.1. Regression. Regression involves prediction of a
numerical test set value based on values of the training dataset,
or mapping a continuous input to an output.'’* High-
throughput datasets, as discussed in the automation section,
are well-suited for training regression models. While these
datasets may limit inter-lab discoveries, they may be very
effective in training ML models on a small number of variables
and comparable samples. In Fig. 5a, the PL maxima of different
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Fig. 5 Different ML paradigms applied to HP stability. (a) Regression models predicting photoluminescence (PL) maximum values with three different ML
algorithms (linear regression, echo state network, and seasonal autoregressive integrated moving average with exogenous regressors) using training data
from high throughput, in situ PL experiments. Adapted with permission!? © 2023 ACS. (b) Classification of HPs as “stable” or “unstable” based on
photocurrent measurements of 96 materials. Adapted with permission'™® © 2024 Nature. (c) Clustering of power conversion efficiency (PCE) datasets
over time based on the similarity of decay curves. Adapted with permission® © 2023 Nature.

HP compositions under relative humidity fluctuations are pre-
dicted"'? with a series of supervised ML regression algorithms
with increasing computational complexity: linear regression
(LR), echo state network (ESN), and seasonal autoregressive
integrated moving average with exogenous regression (SARI-
MAX), of which the latter has the highest accuracy (see Table 2
for descriptions of ML accuracy metrics). This is an example of
both a high-throughput and in situ experiment, as five samples
are characterized simultaneously while relative humidity
is varied. The three ML models are all forecasting future
behaviour with respect to time, giving significant insight
into the intrinsic moisture stability of Cs,FA;_,Pb(I,Br;_,);
HP composition space.

In other works, regression models trained on high-throughput,
in situ optical transmittance data revealed changes in carrier
diffusion length and quasi-Fermi level splitting in MAPbI; and
forecast this behaviour over time."** Following the ISOS (inter-
national summited on organic PV stability) protocols,"™* the
effects of stressors on material changes could be evaluated in a
standardized manner, and the most stable material and device
conditions were verified. Regression algorithms, specifically
through predictions and forecasting, are ideal for predicting
the long-term stability of HPs, especially in response to
dynamic environmental stressors.

5.1.2. Classification. The second type of supervised ML is
classification, in which labelled data is mapped from an input
to an output."’* The data itself may be either numerical or
categorical, but the predictions will only be categorical.

In Fig. 5b, an extra trees classification model is used to
predict whether an HP is stable or not.''> The researchers
investigated the aqueous photoelectrochemical stability of
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MAPDbI; HPs with variation in additives, solvents, and post-
treatment molecules. Bare HP films degraded very quickly in
aqueous solutions and produced no measurable photocurrent.
However, the optimally treated samples showed high photo-
current over long immersion time, indicating superior moist-
ure stability. During training, residual indices of photocurrent
between 0.9 and 1.1 are considered stable, while others are
classified as unstable. The aqueous photoelectrochemical mea-
surements allow several different parameters to be explored,
including HP materials, precursor solvent ratios, additives,
post-treatments, and water immersion time. The accuracy of
classification models is evaluated with the receiver operating
characteristic (ROC) curve and area-under-curve (AUC) plots
(Fig. 5b), and with a confusion matrix showing the true positive,
true negative, false positive, and false negative predictions
(see Table 2 for all evaluation metric definitions).

In another example, researchers predicted perovskite
synthesizability using graph neural networks.""” By classifying
the synthesizability of oxide, halide, hydride, and chalcogenide
perovskites, new material candidates can be identified for
experimental variation. Classification methods have the benefit
of being easily interpretable, but a disadvantage is that the
labels must be predefined by the researcher; thus, some prior
domain knowledge is beneficial. “Stable” and ‘“unstable” may
be clearly defined, but “synthesizable” and ‘“unsynthesizable”
may not be, because there is no training data for the ‘“unsynthe-
sizable” case.'’” This deep neural network case study outper-
forms traditional ML methods due to its ability to learn
structure-property relationships from large datasets, and
to then transfer this knowledge to small, domain-specific
datasets.
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Table 2 Machine learning accuracy evaluation metrics most used in halide perovskite research, for both regression and classification

Type of Evaluation
model metric Full name Definition Formula
Regression R Coefﬁci'ent .of Propgrtion of variance in dependent variable R = S (i —3)?
determination explained by model. - 2
20—
r Correlation Strength and direction of a linear relationship n(Zxy) — (Zx)(Zy)
coefficient between two continuous variables. \/[n2x2 — D2 — ()
MAE Mean absolute error Average absolute difference between the actual and 1A .
predicted values in the dataset. MAE = N; vi =3
MSE Mean-squared error  Average of the squared difference between the 1 2
actual and predicted values in the dataset. MSE = N[:Zl i =)
RMSE Root-mean squared  Square root of MSE, standard deviation of residuals.
error RMSE = vVMSE =
NRMSE Normalized root- Normalizes RMSE by mean of observed values. 1 1 N
mean squared error NRMSE=——— [ S (3; — 5)?
Yinax — Ymin Ni:]

Classification AUC

Area under the curve Performance metric for binary classification,

Area under ROC curve

trade-off between TPR and FPR

ROC Receiving operating  Curve that visualizes a binary classification model’s Plot of TPR (true positive rate) vs. FPR
characteristic performance across all thresholds (false positive rate)
TPR True positive rate Rate of predicted true positives (TP) over actual TPR — TP TP
(Recall) (recall) positives (true positive plus false negative) ~ Actual positive TP + FN
FPR False positive rate Rate of predicted false positives (FP) over actual FPR — FP ~FP
negatives (true negative plus false positive) " Actualnegative TN + FP
Precision Precision Percent of true positives over all positive predictions . TP
Precision = ————
TP + FP
F1 Score F1 Score Harmonic mean of precision and recall. Fl score 2(Precision x recall)

5.2. Unsupervised learning

Unsupervised learning includes clustering, association, and
dimensionality reduction algorithms. In this type of ML, the
data is unlabelled, so there are no target outputs or reward
functions."® Unsupervised learning finds patterns in the input
data by estimating probability distributions. Association rule
learning uncovers hidden relationships by exploring “if-then”
relationships between data points. Clustering algorithms group
unlabelled data based on similarity between points. Dimen-
sionality reduction techniques, such as principal component
analysis (PCA) and t-distributed stochastic neighbour embed-
ding (¢-SNE), transform high-dimensional data into 2D or 3D
visualizations, which allows researchers to gain insights on
local or global data clusters and distributions across the para-
meter space.'’® These approaches allow researchers to eluci-
date patterns in multivariate data without needing to know the
mathematical relationships between inputs and outputs. Over-
all, dimensionality reduction models are useful to understand-
ing HP stability and reproducibility, due to the large number of
parameters that can influence this material.

5.2.1. Clustering. Clustering groups data on its similarity
or dissimilarity by examining the scale of the data within its
environment.'*® These types of algorithms are beneficial when
the input variables affecting the output are either unlabelled or
unknown. However, during training, the number of clusters
must be set by the programmer, which may require multiple
iterations to find the optimal number of clusters. For example,
in Fig. 5c, a clustering algorithm groups aging curves of PCE of
over 2000 photovoltaic devices into four categories based on the

This journal is © The Royal Society of Chemistry 2025

Precision + recall

shape of the curve decay.''® The data shows that after 150 hours
of operation under controlled environmental conditions, there
is a statistically significant correlation between maximum PCE
and stability. In this work, all HP compositions were from the
CsyMA,FA,PbI,,Br, family. The PCE curves are grouped into
clusters of initial gain and slow, medium, and fast exponential
decay. This study reveals that the most stable HP samples
correspond to the highest efficiency devices, as seen in the
“initial gain” cluster. This analysis also reveals the intrinsic HP
irreproducibility, as there are a variety of possible intertwined
degradation mechanisms occurring during the aging experi-
ments. While the researchers cannot correlate these observa-
tions directly with physical degradation mechanisms, they
hypothesize that devices that already have imperfections during
material synthesis will experience faster degradation due to
evolution of defects. Therefore, unsupervised ML shows that
stability and reproducibility of HP materials are inherently
linked.

5.3. Reinforcement learning

In reinforcement learning (RL), the machine or agent learns
from its environment over many iterations, or actions, to
maximize a reward function.'*® This learning method involves
a trial and error approach to make decisions within an environ-
ment, and it may either follow a model or be model-less.
It seeks to explicitly solve a goal,'®® rather than simply identify
data patterns. There has been very limited research done using
RL methods in the HP field, and we anticipate an opportunity
to leverage the knowledge achieved by other materials science
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fields. For instance, RL has been used for the inverse design
of inorganic materials while considering their enthalpy of
formation, electronegativity balance, and charge neutrality,**°
for identifying mechanically though 2D materials,"*' and for
nanostructures entailing optimal emission for thermo-
photovoltaics.'*
probe microscope was trained as an autonomous robot with
RL to remove molecules from a supramolecular structure.'*®
Similar to the HP synthesis space, the supramolecular one is
extremely complex, with large uncertainties and sparse feed-
back. The authors used model-based RL with a positive reward
for lifting a molecule successfully and a negative reward for
rupturing bonds, which trains the agent to perform nanofabri-
cation without human intervention. This type of ML may be
extended to the HP space if an informative reward function and
learning goal are defined. For instance, one could implement

In a recent robotics example, a scanning

reinforcement learning to discover thermodynamically stable
HPs with specific spectral response (e.g., well-defined photo-
luminescence features) for multi-junction all-HP photovoltaics,
LEDs, and other applications.

ML results are evaluated through scores such as R2, MAE,
MSE, RMSE, NRMSE, 1, and MRE for regression tasks'>* and
TPR, FPR, AUC, ROC, and F1 for classification tasks, which are
described in more detail in Table 2. We note that currently,
most studies applying ML to HPs have chosen a single evalua-
tion metric to assess the performance of the ML models used.
Yet, we advocate that publications display at least three metrics
for a comprehensive judgment of all models implemented. This
strategy could prevent some of the common flaws observed
when using ML, such as underestimated variance, and could
provide a more robust comparison between different models

test sets.'?®

6. Al for material and device
reproducibility

The irreproducibility of HPs creates large intrinsic uncertain-
ties within the synthesis and property parameter spaces. This
irreproducibility is present from HP film fabrication to device
performance. In Fig. 6a, the difference in PL peak energy
between batches of films fabricated with the PASCAL'® plat-
form is displayed. Parallel processing, in which the synthesis
steps are performed together, results in significantly higher
variation than serial processing, in which the synthesis steps
are performed sequentially. This is likely due nitrogen purging
of the glove box in between the synthesis steps of the sequential
method. Atmospheric fluctuations from evaporating solvents
can result in higher variations between films, so precise control
is necessary, even within an inert glove box environment.

In Fig. 6b, device performance is compared between robot-
fabricated and human-expert fabricated devices,”® where the
robot-fabricated batch has the lowest standard deviation in
PCE. In this robotic platform, all pipetting and spin-coating
steps are fully automated. The system is inside a nitrogen
glovebox, and there is constant pumping of solvent vapours
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to control the atmosphere during crystallization. The variation
is attributed to the human experts’ inability to achieve the same
level of antisolvent dispense and timing control. To demon-
strate the device irreproducibility across many different labs,
with various levels of automation, the Perovskite Database'?®%”
shows the PCE of all submitted devices. The increasing PCE trend
is seen, but there is still significant variation. Often, only the
highest performing device from an experimental batch is
reported, making the true level of irreproducibility difficult to
determine.

Environmental factors affect both HP stability and reprodu-
cibility. In Fig. 6c, the PCE of 150 devices operating in a humid
and a dry environment are compared."”® The coefficient of
variation (CV) is significantly higher in the humid environ-
ment. These studies demonstrate the variation in HP materials,
devices, and device operation and reveal the need for precise
experimental control and optimization. ML models that take
uncertainty into account tend to perform the best for addres-
sing this challenge. Autonomous experiments are also well-
suited, as they provide high-quality ML training data. Optimi-
zation algorithms, and particularly Bayesian optimization, are
useful in the field of HP materials science, as they allow a
parameter space with high uncertainty to be explored and
optimized.**® Further experiments can be completed, and more
advanced predictions can be made if autonomous labs make
decisions based on ML-inferred results. An essential part of the
self-driving lab involves Al-informed decisions, in which several
iterations of experiments and ML are repeated for maximum
information gained and a known uncertainty threshold.
Through Al-informed experiments, the path from fundamental
science to commercial manufacturing of reproducible HP
optoelectronics can be streamlined.

This section presents three examples of Bayesian optimiza-
tion, which find optimal solutions for HP synthesis, device
synthesis, and tandem PV operation, by finding areas of max-
imum uncertainty and exploring them with further experi-
ments. Challenges such as synthesis variability, domain shift,
measurement noise, and out-of-distribution generalization may
be mitigated with appropriately defined sampling windows,
adequate noise in models, and continuous sampling and
refining of ML models upon expansion of datasets. Random
train-test splits is standard practice for in-distribution perfor-
mance, and out-of-distribution performance may be defined by
materials science criteria such as elemental groups, space
groups, point groups, or crystal systems, in which case leave-
one-out cross validation methods can improve results.**® Gaus-
sian process regression is especially useful for sparse or noisy
datasets, and is an effective surrogate model for optimization,
due to the function taking inherent noise and uncertainty into
account.

6.1. Synthesis optimization

Optimization is a frequent ML objective that seeks to mini-
mize or maximize a certain metric within a parameter space.
Several algorithms are used for optimization, such as gradient
descent, stochastic optimization, Monte Carlo optimization,
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Fig. 6 Examples of statistical distributions within HP research showcasing high irreproducibility and need for high levels of control through automation
and optimization with Al. (a) Box plots of PL peak location of HP thin films fabricated in parallel vs. serial processing, in which fabrication steps are
performed together versus sequentially. Adapted with permission.’? © 2025 RSC. (b) Device performance when fabricated with a robot vs. human
experts. Standard deviation is lowest with robotic fabrication. Variation across all HP devices submitted to the perovskite database. Adapted with
permission.”%12%127 © 2024 ACS and © 2021 Nature. (c) Variation in PCE across 150 devices operating in (i) humid versus (i) dry environments. Adapted

with permission.*?® © 2025 Wiley.

and Bayesian optimization (BO)."*' BO is exceptionally well-

suited for systems with unknown experimental responses,**
due to the large, multidimensional parameter spaces, noisy
data, and unknown underlying properties involved. It searches
for a global optimum efficiently by identifying experiments that
will give the maximum information gain. Each iteration of the
experiments refines the optimization search, as the total corre-
lation acquisition function reveals points in the parameter
space with the lowest correlations to each other and to pre-
viously tested ones, which are then quantified with Kullback-
Leibler divergence.”®

In Fig. 7a, the researchers explored the synthesis parameter
space with the AutoBot (Fig. 3a) and identified the optimal
conditions for a high-quality thin film, by maximizing a unit-
less metric known as the total score, which represents material
quality.”® Here, a high- quality film is defined as having high PL
intensity, high above-bandgap absorption, low below-bandgap
absorption, and uniform PL images. This case aims at under-
standing the underlying physical and chemical properties of
HPs under different synthesis conditions. The total score is
based on optical measurements of thin films, and it allows film
quality to be accessed quickly and efficiently, without the need
for full solar cell device fabrication. This metric increases the
fundamental understanding of the role of synthesis parameters,
including antisolvent drop time, relative humidity during spin
coating, annealing temperature, and annealing time, on the
materials’ optical properties. A high feature importance of spin
coater relative humidity was discovered, which prompted the
further exploration of HP hydration interactions via in situ PL.
In turn, these experiments revealed the interactions between

This journal is © The Royal Society of Chemistry 2025

the methylammonium chloride (MACI) additive and water,
which ultimately affect film nucleation and grain growth dur-
ing the spin coating processing step. This synthesis space
exploration gives vital insight to HP formation kinetics and
shows that high-quality HP films can be fabricated in ambient
atmosphere.

6.2. Device optimization

HP devices also suffer from irreproducibility, so the perfor-
mance parameter space must also be optimized for reproduci-
ble, high-performing devices to become commercialization
ready. For instance, a common optimization metric for solar
cells is photovoltaic PCE, but different metrics such as quan-
tum yield, transmission, or other figures of merit may be useful
as well. In Fig. 7b, an optimized solar cell efficiency of 23.7%
was achieved in a six-dimensional experimental parameter
space using the automated platform SPINBOT (Fig. 3a).'® The
experiments involved 77 trials of unique process parameter
sets, which included spin speed 1, spin speed 2, spin duration
1, spin duration 3, dripping speed, and spin speed 3, which are
varied across the four iterative rounds informed by Bayesian
optimization. Speed and duration 1 refer to the electron trans-
port layer (ETL), speed 2 and dripping speed refer to the HP
solution, and speed and duration 3 refer to the hole transport
layer (HTL). Spin speed of the SnO, ETL layer is revealed to be
the most important feature for device performance, which
reveals that it is necessary to optimize each layer of the device
instead of just the HP layer alone. The optimal processing
parameter conditions were discovered efficiently with minimal
human input. The results also show decreasing variance with
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output. Adapted with permission.*> © 2024 Wiley.

increasing PCE across the experimental iterations, indica-
ting higher reproducibility with control of these synthesis
parameters.

Carrier transport layer optimization is a vital part of device
optimization, and there are several fabrication techniques and
potential materials for both HTLs and ETLs, making this
another large parameter space to consider. Recent develop-
ments in transport layer fabrication have included atomic layer
deposition,'** spin-coating,"** and self-assembled monolayers
(SAMs)."*> SAMss are ultrathin layers that passivate interfaces to
mitigate nonradiative carrier recombination, and their dipole
moments facilitate hole extraction. They also possess an enor-
mous molecular design space of different anchoring, inking,
and head groups.'*® Therefore, Al is very suitable for accelerating
the development of SAMs by optimizing for a desired property,
such as stability, flexibility, rigidity, or device performance.

6.3. Tandem optimization

Because HP-Si tandem cells have surpassed the efficiency of
single junction HP and Si solar cells, they are the closest to
industrial and commercial distribution (see Fig. 7¢** for opti-
mized tandem cell). Multi-terminal cells include multiple junc-
tions, with higher energy bandgap cells in the top of the stack
and lower-energy bandgap cells in the bottom of the stack.
While these architectures are more complex, they allow absorp-
tion of a broader range of the solar spectrum, which increases
the PCE beyond the theoretical radiative efficiency limit."?”
As an example, it has been shown that annual output power
and energy yield of tandem solar cells in Japan’s outdoor

Chem. Soc. Rev.

conditions could be predicted using five ML models: ensembles
of trees, Gaussian process regression, regression trees, support
vector machines, and an artificial neural network. By compar-
ing simulations of 2-terminal, 3-terminal, and 4-terminal tan-
dem cells operating in five different Japanese cities, it was
found that the latter rooftop structure has the highest perfor-
mance for building-integrated photovoltaics in blue-rich solar
spectrum zones, as three HP bandgaps may be used to capture
the largest portion of solar irradiance. The input parameters
were HP thickness, HP bandgap, incident solar spectrum angle,
and irradiance. Their methods included 5-fold cross validation
and Bayesian optimization of monthly energy output predic-
tions to ensure the highest accuracy of their annual energy
output predictions.

ML has been invaluable to furthering fundamental scientific
understanding of HPs, and it has been expanded to device
engineering and product quality, stability, and reproducibility
testing. While novel optoelectronic applications of HPs are still
being explored, photovoltaics is the closest to market readiness.
ML has been applied to photovoltaic devices for interfacial
engineering, tandem optimization, performance forecasting,
and outdoor testing. Optimization algorithms have greatly
improved HP synthesis processes.

7. Al for material and device stability

Once reproducible HP materials are achieved, then reproduci-
ble photovoltaics, tandem cells, and light-emitting devices may
be optimized for stability and performance. High-throughput
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experiments, in situ and operando experiments, and calcula-
tions of intrinsic thermodynamic stability are methods being
applied to solving HP stability. Methods for improving the
understanding of material and device stability include compo-
sition engineering, additive engineering, interfacial engineer-
ing, dynamic liquid interfaces,®® and environmental stressing
experiments. When stability is finally achieved, HPs will be
able to replace or supplement the existing PV materials on the
market.

7.1. Composition engineering

Compositional engineering can be achieved by fabricating
entire HP composition space families and characterizing their
properties, or their properties can be calculated as a method of
material screening. First principles methods*® break down
complex problems to the fundamental physics of a system.
Density functional theory (DFT), the most extensively used
method, solves the unique functional of the probability density
of the ground state and can be used to calculate the band
structure of materials."*® First principles methods have been
used to calculate theoretical thermodynamic stability of HP
compositions, which can save experimental time, as they allow
experiments to be directed to theoretically stable compositions.
These computational techniques can be used to create simu-
lated data to determine various materials properties, such as
bandgap, decomposition energy, theoretical defect-limited
photovoltaic PCE."**"*° In Fig. 8a, thermodynamic stability of
all-inorganic HPs with B-site alloying is calculated using a
combination of DFT and ML with crystal graph convolutional
neural networks (CGCNNs), which are trained on 41400 com-
positions from 3159 DFT datasets."* Alloying of the B site with
up to four elements creates more stable structures due to large
configurational entropy. From this screening, compositions
with high stability and optimal bandgaps were identified while
avoiding the toxicity of Pb and the instability of Sn-based HPs.

In other cases, high-throughput DFT has been adopted to
compute the properties of 495 pseudo-HP structures, including
bandgap, lattice parameters, decomposition energy, and theo-
retical photovoltaic efficiency.'*' Another computational report
explored the bandgaps and stability of 5158 lead-free
alternatives.”’ Combining first-principle calculations and
high-throughput experimental data, optimally stable HPs com-
position can be discovered.'*> Additional first principles meth-
ods, such as linear combinations of atomic orbitals**® are
necessary to improve DFT by including calculations for both
local and delocalized bonds. However, these approaches are
limited to hundreds of atoms, which may limit their accuracy in
complex bulk materials.

Despite the benefits of computational datasets, the simu-
lated data are limited in accuracy and are still computationally
expensive. First principles methods can be complementary to
experimental approaches but cannot fully replace experiments.
There are often discrepancies between theoretical and experi-
mental values, due to confounding properties such as defect
electronic levels, charge carrier transport layer properties, and
interfacial properties not being accounted for in calculations."*

This journal is © The Royal Society of Chemistry 2025
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The irreproducibility of HPs makes it difficult to computationally
model the complex electronic structures of native defects.'**
While there are challenges to this approach, combined DFT and
ML studies can allow for higher ML accuracy by significantly

expanding limited datasets.'*>

7.2. Interfacial engineering

The surface of an HP film often contributes to nonradiative
recombination losses, leading to surface degradation, due to
the greater number of defects at the surface."* To solve this issue,
surface passivation strategies include pseudo-halide anion
engineering,"*” surface chemical polishing,"*® additives,"*° passi-
vation layers,®® and interfacial engineering.">® An archetypal HP
solar cell architecture is shown in Fig. 8b, where a buffer sits
between the active layer and the carrier transport ones.">" These
layers are required for effective electron and hole transport, and
the interfaces between them may either accelerate degradation or
passivate the surface defects in the HP itself. In this work, an ML
screening of 175 molecules for functional groups finds that PAPzO
((2-(5,5-dioxido-10H-phenothiazin-10-yl)ethyl)phosphonic)  acid
and PAPz ((2-(10H-phenothiazin-10-yl)ethyl)phosphonic acid) are
the most suitable, through decreasing trap state densities and
increasing carrier lifetimes. The performance of these molecules
is confirmed experimentally through 1200 hours of operando
measurement of maximum power point, after which they main-
tain over 90% of their original PCE. Thus, interfacial engineering
is an established and valuable method for enhancing HP device
stability.

7.3. Photovoltaics outdoor operation

While lab-scale degradation testing extracts useful information,
outdoor testing is necessary to fully understand the effects of
real environmental factors on HPs.">> With expanding datasets,
forecasts of PCE over time have been an area of growing interest
as well. This value can be predicted from the HP composition
and device architecture, but it will change and possibly degrade
under real outdoor operating conditions, making accurate
forecasts essential. An effective ML pipeline is also necessary
for complex predictions and forecasts.'> First it is necessary to
acquire the dataset, which may be experimental, computa-
tional, or shared literature values. The next steps are to validate
and clean the data, and to select the parameters, which can
include structural, compositional, device, or environmental
variables. The next task is model selection, which may include
several different options so that comparisons can be made
between them. Model training includes hyperparameter train-
ing and cross-validation. Finally, during the evaluation step,
unseen test data should be assessed, and the accuracy metrics
and feature importance should be quantified. Using this pipe-
line, Kernel ridge regression (KRR) was determined to have
superior forecasting ability for HP power output. In Fig. 8c, the
ML predictions of maximum power point over 150 hours of
operation are compared with the true operational values. The
algorithm is trained in different accelerated indoor environ-
mental test conditions, so that the parameters with the highest
contribution to material degradation can be extracted through
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relative feature importance. The indoor tests are performed
following ISOS"* protocols to ensure generalizability and inter-
pretability between labs. Six device types are used to train a
bidirectional long short-term memory neural network, which
achieves high accuracy and reveals that a combination of
illumination and air are the most important environmental
features when performing outdoor performance testing. This
means that degradation mechanisms under illumination and
ambient conditions must be further understood, so that they
may be passivated.

While there is no “ideal” stable HP composition, the studies
discussed above reveal the most stable HP materials under
environmental stressors are those with tolerance factors near 1
and with device stacks incorporating passivated interfaces,
as the majority of nonradiative recombination occurs at the
perovskite surface. Future studies may combine the multiple
composition, interfacial, carrier transport layer, and additive
parameters in their analysis.

8. Accessibility and data sharing

For ML methods to be broadly established across HP and
materials science research, the results and predictions must
be explainable to the general scientific community. This informa-
tion may be attained by reporting multiple accuracy metrics,
incorporating standardized data sharing across the community,
emphasizing relative feature importance, and highlighting the
importance of databases and repositories for further discovery.

8.1. FAIR principles

The FAIR (findable, accessible, interoperable, reproducible)'>®

data principles lay out a set of guidelines for sharing scientific

Chem. Soc. Rev.

data. HP research can be expanded if self-driving labs follow
these principles for sharing data, code, and data analysis
details. Databases also increase the accessibility of AI, by
providing training data for computational-based research
groups that may not have the resources or expertise for expen-
sive experimental laboratory equipment to perform their own
experiments. While the robotic synthesis platforms discussed
in the sections above require high initial investments and
expertise in robotics and Al, open-access code databases and
simpler platforms are allowing autonomous labs to become
more accessible. A simple self-driving lab can be built for as
little as $100,'*® which means that labs with less resources can
begin building skills and code repositories that are relevant to
the growing Al field, increasing accessibility.

8.2. Interpretability tools

Feature importance is an “XAI”, or explainable artificial intelli-
gence method, that allows interpretation of ML results.">’ It can
be extracted from several ML algorithms, and it informs which
experimental variables have the largest effect on the output, so
that they can be further explored. This versatile technique can be
applied to datasets at each stage of HP development, as seen in
Fig. 9. While ML models are typically thought of as “closed-box”
systems, where the underlying mathematical relationships are
unknown, the relative feature importance of the input variables
can give insight into the empirical relationships between
variables."*®'*® SHapley additive exPlanations (SHAP) analysis
and local interpretable model agnostic explanation (LIME) are
the most commonly used feature importance tools, and they can
be extracted to inform the strength of each input on the predicted
output, improving the interpretability of ML results.

SHAP values are model-agnostic and are determined from
game theory and assigned importance values.'®® Game theory is

This journal is © The Royal Society of Chemistry 2025
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a branch of mathematics that considers optimization, specifi-
cally by players choices of actions, and whether or not players
actions affect each other’s results or payouts.'®* It considers the
input features as players, and the output targets as payouts.
Higher positive SHAP values indicate an enhanced positive
contribution to the output, while more negative scores denote
adverse contributions to the output. LIME, or local interpreta-
ble model-agnostic explanations, offers local explanations,
which may be beneficial for explaining specific individual
predictions, while SHAP offers global explanations for the
entire models’ predictions. Because it only considers local
values, LIME computations are significantly faster than SHAP
calculations. It is based on feature perturbation method, which
is another mathematical theory which finds approximate solu-
tions to complex problems by finding true solutions to simpler
problems."®* The average absolute value of these metrics is

This journal is © The Royal Society of Chemistry 2025

often taken so that the features can be easily compared. The
feature importance extraction is an extremely versatile techni-
que that can help researchers decide on next experiments in
each step of the material development process, in precursor
preparation, thin film synthesis, material stability testing, and
device testing.

An analysis of 96 HP compositions with varying additives,
solvents, and post-treatment molecules (Fig. 9a)'"® evaluated
the effects of this vast chemical space on aqueous photocur-
rent, which informed both stability and performance. The
SHAP analysis revealed that atomic charge distribution (4py)
was the most important feature, followed by solvent DMF:
DMSO ratio (Dg) and hydrophilicity (Agy). This method com-
bines ML and first principles calculations, to understand the
extremely complex chemical space of molecule-material inter-
actions. After a SHAP analysis of synthesis input variables, it is
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shown that spin speed 1 and spin duration has the strongest
and lowest effects on device efficiency, respectively (Fig. 9b).'®
In future experiments, spin speed can be kept constant while
other fabrication parameters are explored. A similar SHAP
analysis from the AutoBot reveals the most important feature
on material synthesis is relative humidity during spincoating.”

An investigation of film stability showed that light intensity,
temperature, and humidity are the strongest factors contribut-
ing to HP instability (Fig. 9¢)."®* Here, T80, or the time it takes
for PCE to decrease to 80% of its original value, is adopted as a
metric of stability. The researchers trained a multi-head SER-
esNet model on 906 perovskite datasets from the literature. The
relative feature importance of the environmental stressors and
composition inputs elucidated that the environmental stressors
matter more than the HP composition when predicting device
stability, emphasizing the need for passivation strategies for
long term device performance.

Fig. 9d shows the feature importance of several device
architecture metrics on the key solar cell figures of merit
(open-circuit voltage: Vo, short-circuit current: Jg, fill factor:
FF, and PCE).'®® Twenty-nine features from 26 000 Sn-based HP
experiments recorded in the perovskite database'®” are used to
train and screen a series of ML models, and random forest had
the highest performance for figure-of-merit prediction. The
relative feature importance, which is extracted from the deci-
sion trees within the random forest model, uncovers which
optimal parameter combinations result in the highest perform-
ing device. In sum, the HP composition, hole transport layer
stack sequence, and electron transport layer stack sequence,
are the top three features informing photovoltaic figures of
merit. Uncovering the relative importance of input parameters
can aid with interpretation of ML results and can inform future
experiments.

8.3. Databases

The perovskite database project,’*® which is part of the novel
materials discovery laboratory (NOMAD)'®® repository for shar-
ing materials science data, follows the FAIR data sharing
principles and seeks to increase data sharing within the
research community. The goal of this database is to document
the massive amounts of data produced in a universal manner,
to inform data science and ML-based discoveries. The database
contains over 100 experimental parameters and data from over
42000 photovoltaic perovskite devices. Despite the massive
parameter space this entails, its utilization has been very
modest, as it is limited to photovoltaic devices and requires
continuous updates from researchers.

There is a considerable amount of data involving pure
material characterization missing. Additionally, most experi-
ments involve only one or two experimental variables, leaving
most of the database table entries blank. There are also
challenges in defining stability metrics,'®” which can contri-
bute to misleading conclusions. T80, the time for PCE to reach
80% of its initial value, is a common FOM (figure of merit), but
this is again limited to full PV devices and cannot characterize
thin film stability. Even definitions of T80 vary, as some
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researchers do not consider initial “burn-in” decay time. There-
fore, there is a pressing need for higher data standardization
when reporting to databases. A proposed solution to these
limitations is to share complete, unanalysed or raw datasets,
including undesirable values, to ensure that each shared data-
set is pre-processed and interpreted in the same way, ensuring
higher reproducibility.'®® Training ML algorithms on a variety
of datasets can reduce bias and improve accuracy and transpar-
ency for the entire HP community.

As one successful example of the database usage, an ML
study explored the optimal materials combinations, deposition
methods, and storage conditions for efficient and stable
solar cell devices, with the HP and hole transport layers each
having 15% relative feature importance.’*'®® Other groups
have explored the T80 metric in the database via clustering
algorithms,''® though it is noted that limited data availability
in the database is restricting the quality of stability predic-
tions.'® In Fig. 10a, the bandgap of mixed HPs is predicted
with a gradient boosted regression tree with optimized para-
meters (GBRT-P) algorithm."”® The optimized parameters are
found to be characteristics such as Pauling’s electronegativity,
dipole polarizability, electron affinity, and mobility, which
allow the bandgap to be predicted with much higher accuracy
than simply inputting the HP composition.

Other materials science databases, such as the inorganic
crystallographic structure database (ICSD), have been used to
forecast the bandgaps of 75 low dimensional lead-free HPs."*
Thus far, inter-lab breakthroughs have been limited, due to a
lack of standardization, sharing of only “good” results, and
limited parameter spaces. However, databases produced ‘‘in-
house” tend to be computationally expensive'’* and limited in
their interoperability. Most ML applications have used a combi-
nation of data from the literature, data simulated with first
principles methods, and experimental input.

In Fig. 10b,"”? the prediction of PCE as a function of energy
levels of the electron transport layer, HP, and hole transport
material band structure is shown. This study used ML to
optimize for composition and predict performance based on
the highest occupied molecular orbital and lowest unoccupied
molecular orbital levels of each layer, the bandgap of the HP,
the exciton binding energy, crystallinity, carrier mobility, and
grain size. The ML models were informed by 333 data points
from 2000 papers from the literature, which included both
experimental and computational values. The survey of ML
methods includes linear regression, k-nearest neighbours, sup-
port vector regression, random forest, and an artificial neural
network. The ML predictions were complemented with newly
fabricated material compositions that were not in the literature
training and testing datasets. The researchers fabricated com-
positions with mixed Cs-MA cations, Pb or Sn metal, and mixed
I-Br halides, which experimentally confirmed the ML model’s
PCE predictions, and confirmed that the highest PCE occurs at
a bandgap of 1.2 eV, which matches the theoretical radiative
efficiency limit predictions. This result demonstrates that the
ML models can extract physical trends from relatively small
datasets.
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8.4. Large language models

Large language models (LLMs) may be able to accelerate data
and database interpretation, experimental design, and hypoth-
esis formation. In Fig. 10c, a hypothesis driven by ChatGPT was
created from several thousand literature papers and billions of
possible parameters.'”® The authors used ChatGPT to brain-
storm hypotheses to identify surface passivation molecules for
HP solar cells. They identified polyallylamine as a potential
surface modifier, from a massive space of potential molecules,
and experimentally verified its capability. While this area
of materials science is extremely novel, it demonstrates that
LLMs, when prompted appropriately by human experts, can
reveal insights that may have been otherwise overlooked. The
rapid growth in AI research to address HP stability and repro-
ducibility requires oversight by human experts in the field to
ensure scientifically sound results. The details of all datasets
discussed in this review are summarized in Table 3.

MaterialsBERT,'”> an LLM, has been used to extract
chemical relationships from the literature. Similar scientific
LLMs include PolyBERT for polymers and PubMedBERT for
medical publications. These models are trained specifically on
scientific texts, in materials science, chemistry, and medical
fields, respectively. They are more likely to produce accurate
results than generalized LLMs such as ChatGPT, because their
training datasets, though smaller, are better controlled.
ChatGPT, in contrast, is trained on public information on the
internet.'”®

Despite these novel applications to materials science, LLMs
are still limited to text prediction, so further insights are
required to extract true physical and chemical relationships.
Models that are physics- informed, meaning that they com-
bine physical laws with their learning algorithms, allow prior

This journal is © The Royal Society of Chemistry 2025

domain knowledge to be leveraged with data-driven analyses.
This approach may include built-in restraints or boundary
conditions on the ML models, which can increase their accu-
racy and applicability to real experimental datasets. Looking
forward, we anticipate a significant expansion of physics-
informed ML applied to HP research. In turn, these models
will lead to more accurate, scalable, and reliable results.'””

9. Challenges and concerns

The recent growth of the AI field has revealed significant
challenges that must be addressed. Some major concerns
include the massive energy and water consumption by data
storage centres, potential biases and inaccuracy, and uninten-
tional plagiarism and theft of intellectual property. Data sto-
rage centres consume up to 5 million gallons of water per day to
cool their processing units and avoid overheating."”® In 2023,
data centres used 4% of electricity consumed in the U. S, and
this is expected to quadruple by 2030, because they require a
constant supply of energy.'”® They are also currently producing
around 2% of the U. S. greenhouse gas emissions, which is also
projected to consistently increase. Therefore, there is an urgent
need for renewable energy sources and alternative data storage
devices as the demand for AI continues to grow daily. Novel
optoelectronic devices such as HPs have the potential to either
power the high energy demands of Al through PV or to store
high density data in a way that does not require continuous
energy input through memory devices such as spintronics,
memristors, and artificial synapses.'®® Ethical concerns about
data privacy, intellectual property, and potential for misinfor-
mation can be mitigated by using specialized models such as
MATBert rather than ChatGPT, so that the training dataset is
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Table 3 HP datasets discussed
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Dataset Features (independent Targets
figure Source Size variables) (dependent variables)
Fig. 4a High-throughput photoluminescence 137000 spectra Time, temperature, cation PLnax, PLarcas
spectra ratio, halide ratio PLgwhmy PLioc
Fig. 4b  High-throughput time-resolved 96 spectra Lead to tin ratio Lifetime
photoluminescence spectra
Fig. 4c High-throughput absorbance spectra 215 spectra Halide ratio Bandgap
Fig. 4d  High-throughput X-ray diffraction 40 patterns Antisolvent properties Alpha peak ratio
patterns
Fig. 4e High-throughput grazing-incidence 96 patterns 2D/3D ratio Alpha peak ratio
wide-angle x-ray scattering patterns
Fig. 4f High-throughput scanning electron 2500 images Fabrication technique Surface defects
microscopy images
Fig. 5a High-throughput photoluminescence 7200 spectra Time, relative humidity PLyax
spectra
Fig. 5b  High-throughput photocurrent 96 measurements Additives, solvents, post- Stability
measurements treatment molecules
Fig. 5¢ The perovskite database project 2000 decay curves NA Decay curve shape
Fig. 6a Photoluminescence spectra 7 batches, 45 sub-cells/batch ~ Deposition method PL peak energy
Fig. 6b  High-throughput power conversion Nine batches of devices, Year, human vs. robot PCE
efficiency measurements; the perovskite =~ >40000 PCE measurements
database project
Fig. 6¢ High-throughput power conversion 150 devices Relative humidity PCE coefficient
efficiency measurements of variation
Fig. 7a High-throughput photoluminescence 40 batches, 4 samples/batch, Relative humidity, antisolvent Total score
spectra, UV-vis spectra, and PL images 17 measurements/sample drop time, annealing time,
annealing temperature
Fig. 7b  High-throughput power conversion 77 devices Spin speed 1, spin speed 2, PCE
efficiency measurements spin duration, dripping speed,
and spin speed 3
Fig. 7c Annual energy output calculations 42 000 simulations run Thickness, bandgap, incident Energy output
angle, irradiance, number
of terminals, location, bandgap
Fig. 8a DFT simulations thermodynamic 41400 compositions B site quaternary alloy ratio AHgecomp — TASmix
stability
Fig. 8b  High-throughput power conversion 175 devices, 1200 hours 175 molecules Maximum power
efficiency measurements of operando measurement point
Fig. 8¢ High-throughput maximum power 6 devices, 150 hours Temperature, relative humidity, =~ PCE
point measurements of operando measurement time, atmosphere
Fig. 9a High-throughput aqueous 96 compositions Additive, solvent, post-treatment  Stability
photocurrent measurements molecules
Fig. 9b  High-throughput power conversion 77 devices Spin speed 1, spin speed 2, PCE
efficiency measurements spin duration, dripping speed,
and spin speed 3
Fig. 9c Literature papers published 906 perovskite datasets Light intensity, temperature, T80
2016-2023 humidity, composition
Fig. 9d  The perovskite database project 26 000 experimental records  Device architecture Power conversion
efficiency, short-circuit
current, open-circuit
voltage, and fill factor
Fig. 10a  The perovskite database project 42000 perovskites Pauling’s electronegativity, Bandgap
dipole polarizability, electron
affinity, mobility
Fig. 10b  Power conversion efficiency 333 perovskites Halide ratio, cation ratio, metal =~ PCE
ratio, bandgap
Fig. 10c  Surface passivation Several thousand papers Billions of parameters Surface passivation

molecules

10. Conclusions and outlook

well controlled."®" Increasing the quality and quantity of train-

ing data can significantly improve the accuracy of predictions,
and oversight by domain experts can provide the critical need
for curated datasets. Equally important, databases must have
adequate security practices, to ensure that only the correct
information is shared. Researchers may need to relinquish
their rights to data ownership to the databases, for the overall

benefit of the HP community.

Chem. Soc. Rev.

In conclusion, we showcased the promise of Al to tackle the two
major constraints for HP commercialization: irreproducibility
and instability. First, we outlined a timeline of major accom-
plishments in the fields of Al, HPs, and recent reports of their
combined efforts. Next, we discussed material-based reasons
for HP instability and irreproducibility. An outline of auto-

mated laboratories was presented, where the power of Al for

This journal is © The Royal Society of Chemistry 2025
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Fig. 11 Proposed workflow for autonomous closed-loop laboratories based on Al-informed halide perovskite development. (a) Automated perovskite
solution, thin film synthesis, or device processing. (b) Data collection via (i) high-throughput characterization, or (ii) theoretical simulations. (c) Data
analysis involves (i) statistical methods and feature selection, (ii) machine learning model training and testing, (iii) suggested experiments and decisions.
(d) Shared databases and human expert decision making with the assistance of Al. After this step, steps (a)—(c) are repeated until (e) reproducible and

stable optoelectronic devices are achieved.

materials development is just starting to be implemented.
Examples from the literature of automated synthesis and
characterization platforms are described in detail for how they
contribute to the understanding of HP reproducibility and
stability. A survey of machine learning approaches, including
supervised, unsupervised, and reinforcement learning, as well
as optimization tasks was presented with various examples
from the HP literature.

Evidence of HP irreproducibility is discussed to motivate the
use of AI in experiments. The use of ML to achieve stable
compositions, interfaces, and operational solar and tandem
cells were discussed. To improve accessibility and interpret-
ability, we encourage the more widespread use of databases,
reporting relative feature importance, and incorporating LLM
models for database interpretation.

Looking forward, AI and materials research are becoming
increasingly integrated, but this combined field is still in its
early days. The platforms discussed here are not fully autono-
mous, and their scientific accomplishments are still basic
compared to their potential. Autonomous closed-loop labora-
tories, represented in Fig. 11, involve decision making for the
task of optimization.'®® Advancements in materials science
research are being accelerated with Al, which, in turn, strengthens
the discovery of new materials for increased computational power
that drives Al itself. Both fields are becoming codependent, as
computational power is once again limited by material choices. HP
research illustrates the significant impact of Al, by reducing the
amount of time researchers spend on routine research tasks and

This journal is © The Royal Society of Chemistry 2025

allowing them to focus more on higher-level tasks such as
experimental design, theory, and data interpretation. We antici-
pate that databases will become an essential component of closed-
loop laboratories. While these workflows are becoming increas-
ingly automated, it is still necessary to have a human scientist
driving the process.'®® Even in the case of LLMs, a human expert is
providing the prompts to the language model. Human-AI teams
continuously outperform fully Al-driven approaches. Through
closed-loop laboratories with Al-driven data analysis, HPs are on
the brink of commercialization and widespread adoption as highly
reproducible and stable optoelectronic devices.
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