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ABSTRACT

While there are several bottlenecks in hybrid organic-inorganic perovskite (HOIP) solar cell production steps, including composition
screening, fabrication, material stability, and device performance, machine learning approaches have begun to tackle each of these issues
in recent years. Different algorithms have successfully been adopted to solve the unique problems at each step of HOIP development.
Specifically, high-throughput experimentation produces vast amount of training data required to effectively implement machine learning
methods. Here, we present an overview of machine learning models, including linear regression, neural networks, deep learning, and statis-
tical forecasting. Experimental examples from the literature, where machine learning is applied to HOIP composition screening, thin film
fabrication, thin film characterization, and full device testing, are discussed. These paradigms give insights into the future of HOIP solar cell
research. As databases expand and computational power improves, increasingly accurate predictions of the HOIP behavior are becoming
possible.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0146828

INTRODUCTION

Over the past decade, hybrid organic-inorganic perovskites
(HOIPs) have seen a rapid increase in research interest due to their
exceptional optical and electronic properties, which demonstrates
their potential for optoelectronic applications, such as photovoltaics
(PVs), light-emitting diodes (LEDs), and radiation sensors.! Per-
ovskites follow the ABX3 structure [see Fig. 1(a)], in which A is
an organic or inorganic cation [such as methylammonium (MA"),
formamidinium (FAY), or Cs*], B is a metal cation (such as Pb>*
or Sn?"), and X is a halide anion (such as Cl™, I", or Br~). There
are several possible constituent ions for HOIPs, and each compo-
sition has its own unique properties. This adjustability is extremely
important as it produces a tunable bandgap, which makes HOIPs
an ideal candidate for semiconducting applications. Simultaneously,
the innumerous possibilities for chemical compositions and their
response to environmental stressors represent a colossal hyperpa-
rameter space to be explored.”” In turn, machine learning (ML)
could significantly accelerate the discovery of new HOIP families
and their physical properties.””

Many applications of HOIPs to PVs have been explored,
including dual- and multi-junction devices,”* which have produced

thousands of scientific publications over the past decade, shown as
the blue curve in Fig. 1(b). However, due to the vast parameter
space and degrees of freedom encompassing the HOIPs, purely
experimental progress is often limited. Machine learning (ML),
automated and autonomous high-throughput experimentation, and
artificial intelligence can offer solutions to challenges related to
HOIP material/device development. The pressing need to identify
stable HOIPs has, thus far, led to an exponential growth in the
number of peer-reviewed publications applying ML to these mate-
rials, as shown by the red curve in Fig. 1(b). This steep “learning
curve” demonstrates the scientific community’s interest in the topic,
and, if extrapolated to the next five years, confirms a burgeoning
interest in the implementation of ML algorithms to effectively iden-
tify stable materials, optimize fabrication parameters and device
structures, and device operation conditions that maximize device
recovery.’

Exceptional physical properties of HOIPs have led to them
being considered the “holy grail” for PVs, as they work well in
both single- and dual-junction configurations.” Yet, it is imperative
that researchers effectively exploit all material- and device-related
aspects required for the commercialization of these solar cells. Thus,
herein we present our perspective on how ML can be an additional
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- 100 FIG. 1. (a) Schematic of the hybrid
organic—inorganic perovskite structure
highlighting the broad compositional
space that can be achieved by vary-
ing the elements and molecules used
for each site. (b) Number of scientific
papers published on hybrid perovskites
and machine learning from 2012 to 2022,
per Web of Science. Note that the y axes
are orders of magnitude different, indi-
cating the raise of machine learning tools
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and powerful tool to assist in solving several critical open questions
related to this promising class of material. First, we provide a brief
overview of five distinct ML models. Second, we discuss examples
from the literature applying ML models to different stages of HOIP
development. Third, we examine which specific models are most
beneficial for solving the distinct HOIP problems. Finally, we share
a succinct outlook regarding future experiments that could benefit
from ML.

MACHINE LEARNING MODELS

Numerous ML models have been applied to the field of func-
tional materials, and we focus here on the ones that have already
been used with HOIPs. We present an overview of significant
ML examples from the HOIP literature in this section. The most
straightforward one is linear regression, which can elucidate trends
in data and suggest where additional analysis may be beneficial.'’
At a more sophisticated level, neural networks (NNs) are multi-
layer models that resemble neurons in the brain, and they have
successfully been used from text predictions to image analyses.'’
Deep learning neural networks entail a series of hidden “black-box”
layers, which have the potential to provide extremely accurate pre-
dictions in data trends and image analysis.'>'” These NN models can
remember previous states, which may have lasting historical effects
on HOIP degradation, a very relevant topic of research. Finally, sta-
tistical forecasting combines advanced statistical models with ML
to produce accurate time series predictions of both regular and
irregular, non-linear trends.'*

Linear regression

Initial screening for long-term data trends can be made with
linear regression before beginning the time intensive task of obtain-
ing adequate training data for advanced ML models. Simple pre-
dictions of these data can be made with linear regression, which
uses a least-squares curve fitting method [the black solid line in the
schematic in Fig. 2(a)] to fit the dependent and independent vari-
ables (the blue data points). This model has an extremely low com-
putational cost when compared to more advanced ML algorithms,
making it an adequate starting method to detect long-term trends
before moving to more advanced procedures, if needed. It is also
very useful to use linear regression as a baseline approximation to
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to solve open questions related to this
burgeoning material system.

which the accuracy of other models can be compared. For example,
in Fig. 2(a),"” the bandgap of Cso25FA¢.75Pb(ClxBryI(1-x—y))3 HOIPs
was estimated with high accuracy, showing a strong correlation
between bandgap and halide composition (Pearson’s coefficient,
r > 0.99) and an overall low root mean squared-error (RMSE,
<0.032 eV).

Nearly linear variation with chemical composition allows pre-
dictions of HOIP bandgaps [see Fig. 2(a)] to be calculated quickly,
efficiently, and accurately. As mentioned before, the bandgap tun-
ability enables these materials to be used in various optoelectronic
devices and, thus, it is critical to screening all potentially useful
chemical compositions. Estimating the bandgaps using ML can dras-
tically reduce the time and resource investment to identify stable
HOIPs.

Neural networks

Potential applications of neural networks (NNs), which are a
subset of ML, include quantitative, categorical, or visual data analy-
sis, making this an extremely versatile approach to investigate HOIP
thin films and full devices. The overall NN structure resembles neu-
rons in the brain, as represented by the schematic in Fig. 2(b), which
have complex and intricate levels of connections. NNs may have one
or several hidden layers between their input and output, which have
different weighted computational nodes. In the past decade, with
faster graphics processing unit (GPU) more readily available, NNs
increased in complexity by adding anywhere from two to thousands
of hidden layers. This enhancement in layers is known as deep neu-
ral networks or deep learning and is represented by the schematic in
Fig. 2(c). There is no definite distinction been NNs and deep neu-
ral networks, but most recent studies are taking advantage of the
computing power that gives deep neural networks more accurate
results. There are numerous types of the latter, including artificial
neural networks (ANNs), which are able to predict the potential
energy of MAPbI; perovskites with a hyperbolic tangent update
function [see Fig. 2(b)];'' convolutional neural networks (CNNs),
already used to calculate the octahedral tilt angle, lattice constant,
and bandgap of 862 perovskite compositions [see Fig. 2(c)];'® and
recurrent neural networks (RNNs),'® such as long short-term mem-
ory (LSTM)* and echo state networks (ESNs),* which can predict
the photoluminescence (PL) response of MAPbI; and MAPbBr3
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FIG. 2. Selected machine learning algorithms demonstrated to be effective when analyzing data related to hybrid perovskites: (a) linear regression showing bandgap pre-
diction of CsaFA,MA1_a—p)Pb(ClyBryl(1—x—y))s family of compositions,'> (b) neural network used to forecast the potential energies and atomic forces in cubic perovskite
MAPbI,,"" (c) deep neural network enabled prediction of the octahedral angle tilt in metal halide perovskites, '® (d) image classification of thin film crystallization in phenethy-
lammonium lead bromide chemical space,'® and (e) statistical forecasting of photoluminescence response in a Cs—FA thin film.!” In all panels, the top and bottom rows
refer to illustrations highlighting each concept and one example of published data, respectively. Figures reproduced with permission from (a) Li et al., RSC Adv. 11(26),
15688-15694 (2021), Copyright 2021 RSC Advances; (b) H.-A. Chen and C.-W. Pao, ACS Omega 4(6), 10950-10959 (2019), Copyright 2019 ACS; (c) W. A. Saidi, W.
Shadid, and I. E. Castelli, npj Comput. Mater. 6(1), 36 (2020), Copyright 2020 NPJ Computational Materials; (d) Kirman et al., Matter 2(4), 938-947 (2020), Copyright 2020
Matter; and (e) Srivastava et al., ACS Energy Lett. 8, 1716-1722 (2023), Copyright 2023 ACS.

upon their exposure to humidity. After initial predictions with lin-
ear regression, Li ef al. have demonstrated the application of NNs
and random forest algorithms (RFAs) to precisely predict bandgaps
of the CsaFA,MA (1_4-b)Pb(ClxBryI(1-x—y))3 family with an accuracy
of at least RMSE <0.145 and <0.05, respectively. The more advanced
networks are discussed below.

Image classification

One of the more recent groundbreaking results has been
achieved in the field of image classification. As shown in the illus-
tration in Fig. 2(d), with sufficient input information, one can
build a trustworthy pathway to distinguish images, for example
dogs from cats. This method has rapidly accelerated the classifica-
tion of visual research data, which previously would either require
a scientist with many years of experience (in the simplest cases)
or keep material patterns and correlations hidden (in situations
where human eyes solely cannot resolve the information). As an
effective example of image classification, Kirman et al.'” adopted a
convolutional NN to predict the probability of perovskite thin film
crystallization in the phenethylammonium lead bromide family of
compositions [see Fig. 2(d)]. Starostin et al.' utilized deep learning
methods to identify Debye-Scherrer rings from grazing incidence x-
ray diffraction (GIXRD) images to track the formation of the distinct
(BA)2(MA)n-1PbIzns1 Ruddlesden-Popper phases. Applications of
NNs to identify space groups from XRD data'” and carrier lifetime
from time-resolved PL measurements [see Fig. 3(c-i)]*’ are becom-
ing more researched as these techniques offer valuable information
related to material stability. In our opinion, deep neural networks
and image classification will be adopted more often by research
groups across the world and, in the next few years, will become
routinely used methods to characterize HOIPs.

Statistical forecasting

While NN-assisted methods are in an intermediate stage of
development in the context of HOIPs, statistical forecasting is still in
its early stages of application to PV fabrication and device process-
ing. These advanced statistical methods can be implemented to fore-
cast economic and weather trends that may have several unknown
confounding variables. For instance, they have the potential to pick
up long- and short-term trends and differences in seasons. Srivastava
et al. showed how a statistical forecasting model reveals photolumi-
nescence trends in Cs-FA thin films for over 50 h while submitting
the samples to varying moisture exposure'” [see Fig. 2(e) for one
example case]. Overall, this method outperformed a deep neural
network algorithm and achieved greater than 90% accuracy.

MACHINE LEARNING APPLIED TO HOIP
MATERIAL SELECTION, CHARACTERIZATION,
AND DEVICE TESTING

Effective use of ML in all the steps required to design, test, and
manufacture stable HOIP PVs will attract much of the focus of the
perovskite industry in next few years. We dedicate this section to
demonstrating how ML is useful in each development stage, such as
material screening, thin film characterization, and full device test-
ing. Overall, the cornucopia of possible compositions for HOIPs
has driven researchers to gather a profusion of data relating to
various properties and behaviors of the material combinations™”".
This dataquake has led to the need for the screening of compo-
sitions at various levels to achieve the desired performance and
stability metrics.”” This methodology is analogous to sifting through
a funnel, as depicted in Fig. 3(a-i). Acquiring experimental data
to determine materials’ properties to then screen each possible
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FIG. 3. Machine-learning-assisted examples of the relevant steps required for successfully achieving stable hybrid organic-inorganic perovskite solar cells, including (a)
(i) material screening?! and (ii) bandgap tuning;'> (b) fabrication and selection of (i) carrier transport layers?2 and (i) thin film annealing time; 3 (c) characterization of
physical properties, such as (i) time-resolved photoluminescence?® and (i) refractive index;2* and (d) device testing, such as (i) diffusion length measurements through
photoluminescence and photoconductivity measurements'® and (ii) power convention efficiency (PCE).2> Figures reproduced with permission from a(i) Zhao et al., Nat.
Energy 7(2), 144-152 (2022), Copyright 2021 Springer Nature; a(ii) Li et al., RSC Adv. 11(26), 15688-15694 (2021), Copyright 2021 RSC; b(i) Hartono et al., Nat. Commun.
11(1), 4172 (2020), Copyright 2020 Springer Nature; b(ii) MacLeod et al., Sci. Adv. 6(20) (2020), Copyright 2020 AAAS; c(i) -Dordevi¢ et al., ACS Photonics 5(12), 4888—4895
(2018), Copyright 2018 ACS; c(ii) Kim et al., Nanomaterials 12(6), 932 (2022), Copyright 2022 MDPI; d(i) Stoddard et al., ACS Energy Lett. 5(3), 946-954 (2020), Copyright
2020 ACS; and d(ii) Sol. RRL 6(6), 2101100 (2022), Copyright 2022 Wiley-VCH Verlag.

composition is often extremely laborious and resource intensive.
Thus, big data repositories, such as the “Perovskite Database
Project,” have enabled quick visualization of and information
extraction from the existing published data. Beyond PVs, researchers
have also developed methods to sort through existing papers using
unsupervised ML and natural language processing (NLP)** methods
to extract possible compositions suitable for other optoelectronic
applications. In search of new materials, several studies on the appli-
cation of ML-based methods have provided insights into the struc-
tural, electronic, optical, and overall physical properties of HOIPs
without the need for fabrication and characterization of each chem-
ical composition,'® an incredible step forward in the field. Thus, no
doubt, we see ML as the impetus of the race to find the ideal com-
position and optoelectronic properties supported by automated and
high-throughput fabrication and characterization.

Material discovery and selection

Regarding material fabrication, changing the ratios of the A site
ions, as shown in Fig. 3(a-ii), or the halide ions, can significantly
alter the bandgap. For example, increasing the Cs content at the A
site is well known for increasing the semiconducting film bandgap,
while the addition of FA reduces it. This approach is similar to
the situation presented in Fig. 2(c), where two convolutional NNs
predicted the perovskite bandgap after calculating the lattice con-
stant and octahedral tilt angle of the structures. Furthermore, Cai

et al”’ used LR, support vector regression (SVR), k-nearest neigh-
bor regression (KNR), RFA, gradient boosting regression (GBR),
and NN to predict the bandgaps of mixed Pb-Sn perovskites
and they used the predicted bandgaps to estimate device perfor-
mance in terms of open-circuit voltage (Voc), short-circuit current
(Jse), fill factor (FF), and power conversion efficiency (PCE). First-
principles calculations® and density functional theory (DFT) have
been employed to judge the accuracy of the output of ML algo-
rithms and indicate robustness through low error-margins and
computing costs.

A primary challenge faced by HOIP solar cells is the limited
knowledge of environmentally induced degradation. The mecha-
nisms understood so far indicate that improving charge carrier
mobility by reducing the density of trap states is required for
enhanced device lifetimes. Due to the poor thermal stability of
numerous HOIP combinations, defect formation poses a real threat
to the lifetime of the devices. Defect-induced localized trap states
hinder ionic motion and trap charges at the surface and/or grain
boundaries. In PV applications, this behavior is, in general, detri-
mental to the device open-circuit voltage (Voc) and, hence, the
power conversion efficiency (PCE) over a period of time. In addi-
tion, exposure to moisture has displayed an exacerbated degradation
timeline in MAPbI; and is one of the most extensively studied envi-
ronmental stressors.'”'" Solutions to hinder degradation, such as
surface passivation using capping layers that modify the material
chemistry of the HOIPs, have shown promising results. Due to
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the large possibility of chemical species, the selection of appropri-
ate layers has also been subjected to ML regression, assisting the
rapid identification of best candidates [see Fig. 3(b-i)]. Here, along
with regression models, image classification has been utilized to
quickly analyze the color of thin films during degradation exper-
iments within MAPbI; for 21 different capping layers. The onset
of color change observed was matched against that of a random
forest regression with an RMSE of ~100 min.”” Other measures
to improve stability entail appropriate annealing times for carrier
transport layers, such as spiro-OMeTAD, a commonly used hole
transport layer (HTL) in full HOIP devices [see Fig. 3(b-ii)],”*
post-treatment amines, again for which ML has been used to predict
options that would be most compatible with perovskite films,*! and
feature engineering to study the photoelectrochemical properties
of MAPbI; films in water.”>” We notice that further quantita-
tive studies on the effects of external stressors, such as exposure
to oxygen, applied potential, and variations in temperature, are
required to fill in the remaining knowledge gaps. Overall, we fore-
see ML as a key tool for effectively exploring the vast hyperpa-
rameter space related to all possible combinations of the relevant
stressors.

Lead (Pb) is, by far, the most selected B site metal cation in
HOIPs. However, due to environmental and health concerns related
to the handling, storage, and use of lead, there has been a strong
interest in Pb-free compositions.’ The use of ML for identifying Pb-
free families has, thus far, focused on tree-based algorithms that use
predictive models for properties such as heat of formation, Debye
temperature, and bandgap to determine the suitability of the possible
compositions.””° Sn is a common alternative for Pb-based HOIPs;**
however, the performance and stability of solar cells containing Sn
significantly lag behind compared to those with Pb. Again, there is
much work to be accomplished with Pb-free HOIPs and the need for
ML methods for the discovery of stable, Pb-free alternatives remains
imperative.

Device fabrication

We also note an emerging interest in higher-throughput fabri-
cation experiments in HOIP research. The fabrication of thin films
commonly utilizes techniques such as spin coating, thermal evap-
oration, and atomic layer deposition. However, these methods are
tedious and time-consuming, impeding the pace of characteriza-
tion and development of new materials.'” In addition, the occasional
poor consistency in the fabrication process has stalled the develop-
ment of methods for scaling up the production of HOIPs. To over-
come these barriers, the automation of the fabrication steps using
robotics has already been demonstrated in few publications.”"**’
Uniform coatings of each layer, i.e., the absorber, electron trans-
port layers (ETLs), hole transport layers (HTLs), and electrodes,
is required for a successful scale-up. While methods such as spin
coating work exceptionally well at the laboratory scale, they can-
not be used for fabricating large PV modules. Therefore, there is
an impending need for the development of high-throughput fab-
rication methods that can be scaled successfully to manufacture
full PV modules. Fabrication of PV modules is a sequential pro-
cess. From substrate preparation to deposition of the absorber layer,
ETL and HTL, and, finally, electrodes, each step requires optimiza-
tion in various ways. Liu et al.”” applied probabilistic constraints at

PERSPECTIVE scitation.org/journal/ape

each development stage to ascertain the optimal parameters using
power conversion efficiency as the target metric. Using the knowl-
edge acquired from one set of experimental data, the next set of
experiments is improved and developed. Other methods, such as
Bayesian parameter estimation,”"” also utilize the output from pre-
vious sets of data to reject unnecessary or unpromising parameters
as a means of optimization.

Device characterization

An ascending interest in data-driven approaches to character-
ize HOIP thin films has led to the development of novel ML-based
solutions. The use of automated data diagnosis has significantly
reduced the time investment enabling further workflow optimiza-
tion. High throughput experimentation can often generate very large
quantities of data, resulting in time- and computation-intensive
methods for analysis, which may leave significant room for error.
Material parameters, such as carrier lifetime [see Fig. 3(c-i)] and
refractive index [see Fig. 3(c-ii)], have been analyzed and predicted
for large datasets using ML models to quickly and accurately report
crucial data required for the development of stable HOIPs. For
the optimization of complete PV devices, the identification of the
main limiting factor in J-V characteristics is essential.*’ Surface and
bulk defects in HOIP solar cells lead to Shockley-Read-Hall (SRH)
recombination dominating the loss and reducing Voc. Several pub-
lications have indicated the interfaces between the absorber layer
and electron transport layer (ETL)/hole transport layer (HTL) to be
the main recombination centers in HOIP solar cells. Determining
the type of recombination mechanism can help identify the presence
of trap states. ML algorithms, such as tree-based methods, have been
used to classify recombination processes based on Vo and ideality
factor. Predictions for carrier diffusion lengths in MAPbI; as
shown in Fig. 3(d-i) and the PCE of MA/FA/Cs-Pb/Sn-13/Br3/Cl3
type compositions in Fig. 3(d-ii) are additional prime exam-
ples for the crucial need for the implementation of ML
methods in assisting accurate and reliable analysis of large
sets of data.

OUTLOOK

Yesterday’s technology can no longer sufficiently meet the
needs of today’s rapid pace of material discovery and development.
The vast compositional space and non-standardized fabrication and
characterization techniques for HOIPs require ML-facilitated anal-
yses and predictions to keep up with the pace of knowledge being
acquired in the field. Various ML models and their applications to
solve the numerous stability and performance issues related to HOIP
solar cells presented in this perspective clearly indicate the rising
interest and uptake in utilizing advanced, computational frame-
works that are considerably less resource and time intensive. The
sharing of ML algorithms and databases is already helping in stan-
dardizing the performance metrics for all kinds of HOIPs for energy
applications, including LEDs and thermoelectrics. By extending this
to robotic applications to high-throughput experiments and fabri-
cation techniques, key environmental factors, optimal processing
conditions, and the best suited ML models for various problems can
be narrowed down. Specifically, we advocate for high-throughput
measurements that do not require data augmentation'’ and can
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provide direct information about solar cells’ figures of merit, such
as ellipsometry, PL, and time resolved PL, to acquire information
related to the generation, recombination, and collection of carriers,
respectively. In the realm of imaging, the analysis of data produced
by sophisticated methods, such as scanning probe and electron
microscopies, is now benefiting from ML-assisted methods that
entail the conversion of information (images and spectroscopy mea-
surements) into descriptors that enables its quick assessment using
statistical methods and graph analysis.*! Images acquired by more
simple methods can also be extremely informative. As an example,
dark-field imaging has already been successfully adopted to inform
variations in the electrical conductivity of HOIPs, revealing subtle
features not distinguishable by human eyes.* Ideally, photographs
using cell phones could enable quick, low cost, and vast amount
of information about HOIP changes once submitted to distinct
environmental stressors, which could then be correlated with the
materials’ optical properties. Concrete examples include correlating
variations in sample color with changes in the material permittivity
(i.e., light absorption) or the formation of new compounds on the
surface of the HOIP films. In this ideal scenario, the main challenge
would be to assure that images acquired from different laboratories
around the world are comparable. Thus, a standard set of parameters
(camera angle, lighting, etc.) is imperative. Furthermore, our need to
access colossal amount of data to train any ML in an accurate man-
ner demonstrates more than ever the need for researchers to follow
the findable, accessible, interoperable, and reusable (FAIR) guiding
principles.*

CONCLUSIONS

Significant present-day challenges to HOIP solar cell devel-
opment are long-term stability and reproducibility. This issue is
currently being addressed by diverse approaches that integrate ML
models. However, ML accuracy is still limited by the availability
of adequate training data. To train ML models with high accu-
racy to forecast HOIP degradation and performance, emphasis on
high-throughput, automated, or robotic experimentation is needed.
Neural networks can be applied to a diverse set of problems in the
HOIP development process, so are an extremely vital approach. Sta-
tistical forecasting methods are computationally expensive but can
predict long-term behavior with high accuracy. Overall, we pre-
sented a survey of the most promising ML models to predict HOIP
materials and PV devices. As the number of scientific publications
encompassing HOIP solar cells and ML continues to grow (likely
exponentially), we anticipate the use of artificial intelligence tools to
become more widely used prior to, during, and after experiments.
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